

# **BAT32A279** Datasheet

Ultra-low power 32-bit microcontroller based on ARM® Cortex-M0®+

Built-in 512K bytes Flash, rich analog functions, timers and various communication interfaces

V1.0.6

Please note the following CMS IP policy

\* China Micro Semicon (Shenzhen) Co., Ltd. (hereinafter referred to as the Company) has applied for a patent and enjoys absolute legal rights and interests. The patent rights related to the Company's MCUs or other products have not been authorized to be licensed, and any company, organization or individual who infringes the Company's patent rights through improper means will take all possible legal actions to curb the infringer's improper infringement and recover the losses suffered by the Company as a result of the infringement or the illegal benefits obtained by the infringer.

\* The name and logo of China Micro Semicon (Shenzhen) Co., Ltd. are registered trademarks of the Company.

\* The Company reserves the right to further explain the reliability, functionality and design improvements of the products in the data sheet. However, the Company is not responsible for the use of the Specification Contents. The applications mentioned herein are for illustrative purposes only and the Company does not warrant and does not represent that these applications can be applied without further modification, nor does it recommend that its products are not licensed for lifesaving, life-sustaining devices or systems as critical devices. The Company reserves the right to modify the product without prior notice, please refer to the official website www.mcu.com.cn for the latest information.



### **Function**

- Ultra-low power operating environment:
  - Supply voltage range: 2.0V to 5.5V
  - Temperature range: -40°C to 125°C
  - Low power modes: sleep mode, deep sleep mode
  - Operating power consumption: 100uA/MHz@64MHz
  - Power consumption in deep sleep mode: 1.5uA
  - Deep sleep mode +32.768K + RTC operation: 1.9uA
- Kernel:
  - ARM®32-bitCortex®-M0+ CPU
  - > Operating frequency: 32KHz to 64MHz
- Memory:
  - 512KB Flash memory, program shared with data storage
  - > 20KB dedicated data Flash memory
  - ➢ 64KB SRAM MEMORY WITH PARITY

#### • Power and reset management:

- > Built-in power-on reset (POL) circuitry
- Built-in voltage detection (LVD) circuit (threshold voltage can be set).

#### Clock Management:

- Built-in high-speed oscillator, accuracy (±1%). 1MHz to 64MHz system clock and peripheral module action clock are available
- > Built-in 15KHz low-speed oscillator
- Built-in 1 channel PLL
- Support 1MHz ~ 20MHz external crystal oscillator, support stop vibration monitoring
- Supports 32.768KHz external crystal oscillator for correction of internal highspeed oscillators
- Multiplier/Divider Module:
  - Multiplier: Supports single-cycle 32bit multiplication operations
  - Divider: Supports 32bit signed integer division and requires only 8 CPU clock cycles to complete the operation
- Enhanced DMA controller:
  - > An interrupt triggers a start.
  - Transmission modes are selectable (normal transfer mode, repeat transfer

#### Input/output port:

- > I/O ports: 59-93
- Capable of N-channel open-drain, TTL input buffering, and internal pull-up switching
- Built-in key interrupt check-out function
- Control circuitry with built-in clock output/buzzer output
- Serial two-wire debugger (SWD).

#### Rich timers:

- 16-bit timer: 17 channels (with PWM function and motor dedicated PWM function).
- 15-bit interval timer: 1
- Real-time clock (RTC): 1 (with perpetual calendar, alarm clock function, and support for a wide range of clock correction).
- Watchdog timer (WWDT): 1
- SysTick timer
- Rich and flexible interfaces:
  - Three serial communication units: serial communication unit 0 can be freely configured as 2-channel standard UART or 4-channel 3-wire SPI or 4-channel simple I<sup>2</sup>C; Serial communication unit 1 or 2 can be freely configured as 1-channel standard UART or 2-channel 3-wire SPI or 2-channel simple I<sup>2</sup>C; (UART of unit 0 supports LIN Bus communication, SPI00 channel supports 4-wire SPI communication)
  - Standard SPI: 2 channels (supports 8-bit and 16-bit).
  - Standard I<sup>2</sup>C: 2 channels
  - > CAN: 3 channels
  - LCD BUS interface: support 8080, 6800 connectors
- Security features:
  - Complies with IEC/UL 60730 related standards
  - Abnormal storage space access error is





mode, block transfer mode, and chain transfer mode).

The source/destination field is optional for full address space range

#### • Linkage controller:

- It can link event signals together to achieve the linkage of peripheral functions.
- There are 23 types of event inputs and 10 types of event triggers.

#### • Rich analog periphery:

- 12-bit precision ADC converter with slew rate 1 42Msps, 28 external analog channels, internal optional PGA output as a conversion channel, with temperature sensor, support for single-channel conversion mode and 2, 3, 4-channel scanning conversion mode. Conversion range: 0 to positive reference voltage
- 8-bit precision D/A converter, 2-channel analog output, real-time output function, output voltage range 0~V<sub>DD</sub>
- Comparator (CMP) with built-in twochannel hysteresis comparator, selectable input source, and selectable external or internal reference voltage reference
- Programmable gain amplifier (PGA) with two channels of PGA to program 4/8/10/12/14/16/32 gains with an external GND pin that can be used as differential mode

#### reported

- Supports RAM parity
- Supports hardware CRC verification
- Supports critical SFR protection against misoperation
- > 128-bit unique ID number
- Flashsecondary protection in debug mode (Level1: only flash full-domain erasure, no read or write; Level2: The emulator connection is invalid and cannot be operated on flash).

#### Package:

 Support 64Pin, 80Pin, 100Pin multiple packages



## **1 Overview**

## **1.1 Brief Introduction**

BAT32A279 series conforms to AEC-Q100 Grade1 automotive product standard, -40~125°C operating ambient temperature, support 64~100Pin in a variety of LQFP packages. This product uses the 32bit of the high-performance ARM®Cortex®-M0+ RISC core, operating up to 64MHz, uses high-speed embedded flash memory (SRAM up to 64 KB, program/data flash up to 512KB). This product integrates a variety of standard interfaces such as I<sup>2</sup>C, SPI, UART, LIN, CAN bus and LCD bus interface. Integrated 12bit A/D converter, temperature sensor, 8bit D/A converter, comparator, programmable gain amplifier. The 12bit A/D converter can acquire external sensor signals to reduce system design costs. The 8bit D/A converter can be used for audio playback or power control. An integrated on-chip temperature sensor enables real-time monitoring of the external ambient temperature. The chip's integrated comparator supports both high-speed and low-speed operating modes, control feedback from high-speed motors in high-speed mode, and battery monitoring in low-speed mode. Integrate a variety of advanced timer modules, load 1-channel SysTick timer, 17-channel 16bit timer, 1-channel 15bit interval timer, watchdog timer and real-time clock and other functions, and can support general-purpose PWM and motor dedicated PWM and other applications.

The BAT32A279 also features excellent low-power performance, supporting two low-power modes of sleep and deep sleep, providing design flexibility. It consumes 100uA/MHz @64MHz and consumes only power in deep sleep mode 1.5uA for battery-powered, low-power devices. At the same time, due to the integrated event linkage controller, it can realize the direct connection between hardware modules without CPU intervention, which is faster than using interrupt response. At the same time, the frequency of CPU activity is reduced, which prolongs battery life.

These features make the BAT32A279 microcontroller family superior reliability, rich integrated peripheral functions, and excellent low-power performance, which make them widely applicable to the development of automotive products.



## 1.2 List of Product Models



#### BAT32A279 product list:

| Number of pins | Package                 | Product model       |  |  |
|----------------|-------------------------|---------------------|--|--|
| 64 pipe        | 64-pin plastic LQFP     |                     |  |  |
| 64 pins        | (7X7mm, 0.4mm pitch).   | DAI 32AZI 9KIVI04FD |  |  |
| 90 pipe        | 80-pin plastic LQFP     | BAT32A279KM80FA     |  |  |
| ou pins        | (12X12mm, 0.5mm pitch). |                     |  |  |
| 100 ping       | 100-pin plastic LQFP    |                     |  |  |
| roo pins       | (14X14mm, 0.5mm pitch). | DAT32A279KMT00FA    |  |  |

#### FLASH, SRAM capacity:

| Floop  | Specific data   |      |               | BAT32A279     |                |
|--------|-----------------|------|---------------|---------------|----------------|
| memory | Flash<br>memory | SRAM | 64 pins       | 80 pins       | 100 pins       |
| 512KB  | 20KB            | 64KB | BAT32A279KM64 | BAT32A279KM80 | BAT32A279KM100 |



#### BAT32A279 Product Selection Table:

| Part No.             | Kernel | Frequency (MHz). | Minimum operating voltage (V). | Maximum operating voltage (V). | Code Flash (KB) | SRAM (KB) | Data Flash (KB) | DMA | GPIO | 12bit ADC | 8bit DAC | Comparator CMP | Amplifier PGA | Universal timer (16bit). | Real-time clock (RTC). | Watchdog timer (WDT). | Asynchronous serial bus (UART). | Synchronous serial bus (SPI). | IIC bus | LIN bus | CAN bus | Hardware multiplier | Hardware divider | Package     |
|----------------------|--------|------------------|--------------------------------|--------------------------------|-----------------|-----------|-----------------|-----|------|-----------|----------|----------------|---------------|--------------------------|------------------------|-----------------------|---------------------------------|-------------------------------|---------|---------|---------|---------------------|------------------|-------------|
| BAT32A279<br>KM64FB  | M0+    | 64               | 2.0                            | 5.5                            | 512             | 64        | 20              | 37  | 59   | 16+<br>4  | 2        | 2              | 2             | 17                       | 1                      | 1                     | 3                               | 6                             | 2+6     | 1       | 1       | Y                   | Y                | LQFP<br>64  |
| BAT32A279<br>KM80FA  | M0+    | 64               | 2.0                            | 5.5                            | 512             | 64        | 20              | 38  | 75   | 22+<br>4  | 2        | 2              | 2             | 17                       | 1                      | 1                     | 4                               | 1+8                           | 2+8     | 1       | 2       | Y                   | Y                | LQFP<br>80  |
| BAT32A279<br>KM100FA | M0+    | 64               | 2.0                            | 5.5                            | 512             | 64        | 20              | 40  | 93   | 28+<br>4  | 2        | 2              | 2             | 17                       | 1                      | 1                     | 4                               | 2+8                           | 2+8     | 1       | 3       | Y                   | Y                | LQFP<br>100 |



## 1.3 Top View

### 1.3.1 BAT32A279KM64FB

• 64-pin plastic LQFP (7x7mm, 0.4mm pitch).



- 1. The EVss pin and the Vss pin must be the same potential.
- 2. The voltage at the  $V_{DD}$  pin must be equal to the voltage at the  $EV_{DD}$  pin.
- In the case of application areas where noise generated from the microcontroller needs to be reduced, it is recommended to supply power to V<sub>DD</sub> and EV<sub>DD</sub> separately and to supply V<sub>SS</sub> and EV<sub>SS</sub> Noise countermeasures such as individual grounding.
- 4. The functions in the preceding figure () can be assigned by setting the peripheral I/O redirection registers.





## 1.3.2 BAT32A279KM80FA

• 80-pin plastic LQFP (12x12mm, 0.5mm pitch).



- 1. The  $EV_{SS}$  pin and the  $V_{SS}$  pin must be the same potential.
- 2. The voltage at the  $V_{DD}$  pin must be equal to the voltage at the  $EV_{DD}$  pin.
- In the case of application areas where noise generated from the microcontroller needs to be reduced, it is recommended to supply power to V<sub>DD</sub> and EV<sub>DD</sub> separately and to supply V<sub>SS</sub> and EV<sub>SS</sub> Noise countermeasures such as individual grounding.
- 4. The functions in the preceding figure () can be assigned by setting the peripheral I/O redirection registers.



## 1.3.3 BAT32A279KM100FA



- 1. The  $\mathsf{EV}_{\mathsf{SS}}$  pin and the  $\mathsf{V}_{\mathsf{SS}}$  pin must be the same potential.
- 2. The voltage at the  $V_{DD}$  pin must be equal to the voltage at the  $EV_{DD}$  pin.
- In the case of application areas where noise generated from the microcontroller needs to be reduced, it is recommended to supply power to V<sub>DD</sub> and EV<sub>DD</sub> separately and to supply V<sub>SS</sub> and EV<sub>SS</sub> Noise countermeasures such as individual grounding.
- 4. The functions in the preceding figure () can be assigned by setting the peripheral I/O redirection registers.



# **2 Product Structure Diagram**



Note: The above figure is a block diagram of a 100-pin product, and some functions of products below 100 pin are not supported



# **3 Memory Mapping**





# **4** Pin Function

## 4.1 Port Functionality

The relationship between the power supply and the pin is shown below.

| Power/Ground                       | The corresponding pin                                                        |
|------------------------------------|------------------------------------------------------------------------------|
| EV <sub>DD</sub> /EV <sub>SS</sub> | <ul> <li>Port pins other than P20~P27, P121~P124, P137 and RESETB</li> </ul> |
| In <sub>DD</sub> /V <sub>SS</sub>  | • P20~P27, P121~P124, P13 and RESETB                                         |

All ports of this product are divided into five types by type, which are type1 to type5, and the corresponding conditions are as follows:

type 1: Bidirectional I/O function

type 2: NOD function, corresponding to pin P60-P63

type 3: Only input functions, such as clocks, correspond to pins P121-P124

type 4: Output function only, corresponding to pin P130

type 5: RESET function, corresponding to pin RESETB

For details of the lead frame diagrams for each type, see 4.3The Port Type.



## 4.1.1 64 Pin Product Pin Function Description

(1/2)

| Function | Input/output  | After the reset is | Multiplexing function                              | Description of the feature                                                                                                                                            |                                                                                                                           |  |
|----------|---------------|--------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| name     | mparoapar     | released           |                                                    |                                                                                                                                                                       |                                                                                                                           |  |
| P00      |               | Input port         | TI00/TBCLK0/(TAO)/(INTP8)                          | Port 0                                                                                                                                                                |                                                                                                                           |  |
| P01      |               | input port         | TO00/TBCLK1/TAIO/(INTP10)                          | A 7-bit input/output port that can be specified as an input or output in                                                                                              |                                                                                                                           |  |
| P02      |               | Analog             | ANI11/SDO10/TXD1/VCIN10/CTxD0                      | bits. The input port can be set by                                                                                                                                    |                                                                                                                           |  |
| P03      |               | function           | ANI10/SDI10/RXD1/SDA10/VCIN11/CRxD0                | software using internal pull-up                                                                                                                                       |                                                                                                                           |  |
| P04      | Innut/output  | ranotion           | ANI13/SCLK10/SCL10                                 | The inputs for P01, P03, and P04                                                                                                                                      |                                                                                                                           |  |
| P05      | πραι/ουιραι   |                    | (INTP10)                                           | can be set to TTL                                                                                                                                                     |                                                                                                                           |  |
| P06      |               | Input<br>port      | (INTP11)/(TAIO)                                    | The outputs of P00 and P02~P04<br>can be set to N-channel open-drain<br>output (EV <sub>DD</sub> withstand voltage).<br>P02, P03, P04 can be set as<br>analog inputs. |                                                                                                                           |  |
| P10      |               | Analog             | SCLK11/SCL11/TMIOB1/ANI9                           | Port 1                                                                                                                                                                |                                                                                                                           |  |
| P11      |               | function           | (RxD0)/SDI11/SDA11/TMIOD1/(TMIOA1)/ANI8            | An 8-bit input/output port that can be specified as an input or output in                                                                                             |                                                                                                                           |  |
| P12      |               |                    | (TxD0)/SDO11/TMIOA1/(TMIOB0)/(INTP5)               | bits. The input port can be set by                                                                                                                                    |                                                                                                                           |  |
| P13      |               | Input              | TXD2/SDO20/TMIOC1/(TMIOD1)                         | software using internal pull-up<br>resistors.                                                                                                                         |                                                                                                                           |  |
| P14      |               |                    | RXD2/SDI20/SDA20/TMIOB0/(TMIOC1)/(SCLA0)           | The inputs for P10 and P14~P17                                                                                                                                        |                                                                                                                           |  |
| P15      | Input/output  |                    | SCLK20/SCL20/TMIOD0/(SDAA0)                        | can be set to TTL                                                                                                                                                     |                                                                                                                           |  |
| P16      |               | port               | TI01/TO01/INTP5/TMIOC0/(SDI00)/(RXD0)              | The outputs of P10, P11, P13 to<br>P15, and P17 can be set to N-                                                                                                      |                                                                                                                           |  |
| P17      |               |                    | TI02/TO02/TMIOA0/TMCLK/(SDO00)<br>/(TXD0)/(TMIOD0) | channel open-drain outputs (EVDD<br>withstand voltage).<br>P10 and P11 can be set to analog<br>inputs.                                                                |                                                                                                                           |  |
| P20      |               |                    | ANI0/AVREFP/VCIN12/(INTP11)                        |                                                                                                                                                                       |                                                                                                                           |  |
| P21      |               |                    | ANI1/AVREFM/VCIN13                                 |                                                                                                                                                                       |                                                                                                                           |  |
| P22      |               |                    | ANI2/ANO0/PGA0IN/VCIN0                             | Port 2                                                                                                                                                                |                                                                                                                           |  |
| P23      | Innut/output  | Analog             | ANI3/ANO1/PGA0GND                                  | An 8-bit input/output port that can                                                                                                                                   |                                                                                                                           |  |
| P24      | πραι/ουιραι   | function           | ANI4/PGA1IN                                        | be specified as an input or output in                                                                                                                                 |                                                                                                                           |  |
| P25      |               |                    | ANI5/PGA1GND                                       | bits. Can be set to analog input.                                                                                                                                     |                                                                                                                           |  |
| P26      |               |                    | ANI6                                               |                                                                                                                                                                       |                                                                                                                           |  |
| P27      |               |                    | ANI7                                               |                                                                                                                                                                       |                                                                                                                           |  |
| P30      |               | Input              | INTP3/RTC1HZ/SCLK00/SCL00/TAO<br>/(TMIOB1)         | Port 3<br>A 2-bit input/output port that can be<br>specified as an input or output in                                                                                 |                                                                                                                           |  |
| P31      | – Input/outpu | Input/output       | port                                               | TI03/TO03/INTP4/(CLKBUZ0)/(TAIO)<br>/VCOUT1                                                                                                                           | bits. The input port can be set by<br>software using internal pull-up<br>resistors.<br>The input of the P30 can be set to |  |



| TTL input buffering. The output of |
|------------------------------------|
| the P30 can be set to an N-channel |
| open-drain output (EVDD withstand  |
| voltage).                          |

| 10  |     | 5  | 1 |
|-----|-----|----|---|
| 1.  | , , | ۰, | 1 |
| 14  | _/  | ~  |   |
| · · |     |    |   |

| <b>Europhic</b> |              | After the          |                              |                                                                                     |
|-----------------|--------------|--------------------|------------------------------|-------------------------------------------------------------------------------------|
| Function        | Input/output | reset is           | Multiplexing function        | Function                                                                            |
| name            |              | released           |                              |                                                                                     |
| P40             |              |                    | SWDIO                        | Port 4                                                                              |
| P41             | Input/output | Input port         | (TAIO)                       | A 4-bit input/output port that can be specified as                                  |
| P42             | mpurouipui   | πραιροπ            | (INTP8)                      | an input or output in bits. The input port can be set                               |
| P43             |              |                    | (INTP9)                      | by software using internal pull-up resistors.                                       |
| DE0             |              |                    | INTP1/SDI00/RXD0/SDA00/TBIO0 | Port 5                                                                              |
| F 30            |              |                    | /(TAO)/(TMIOC1)/(CRxD0)      | A 6-bit input/output port that can be specified as                                  |
| P51             |              |                    | INTP2/SDO00/TXD0/TBIO1       | an input or output in bits. The input port can be set                               |
| 101             | loout/outout | loout port         | /(TMIOD1)/(CTxD0)            | by software using internal pull-up resistors.                                       |
| P52             | input/output | input port         | (INTP1)                      | The inputs of P50 and P55 can be set to TTL input                                   |
| P53             |              |                    | (INTP2)                      | The outputs of P50, P51, and P55 can be set to                                      |
| P54             |              |                    | (INTP3)                      | N-channel open-drain outputs (FVDD withstand                                        |
| P55             |              |                    | (INTP4)/(CLKBUZ1)/(SCLK00)   | voltage).                                                                           |
| P60             |              |                    | SCLA0                        | Port 6                                                                              |
| P61             |              |                    | SDAA0                        | A 4-bit input/output port that can be specified as                                  |
| P62             | Input/output | Input port         | SS00/SCLA1                   | an input or output in bits.                                                         |
| P63             |              |                    | SDAA1                        | The output of P60~P63 is an N-channel open-<br>drain output (6V withstand voltage). |
| P70             |              |                    | KR0/SCLK21/SCL21/(VCOUT1)    |                                                                                     |
| P71             |              |                    | KR1/SDI21/SDA21/(VCOUT0)     | Port 7                                                                              |
| P72             |              |                    | KR2/SDO21                    | An 8-bit input/output port that can be specified as                                 |
| P73             | ,            |                    | KR3/SDO01                    | an input or output in bits. The input port can be set                               |
| P74             | input/output | Input port         | KR4/INTP8/SDI01/SDA01        | by software using internal pull-up resistors.                                       |
| P75             |              |                    | KR5/INTP9/SCLK01/SCL01       | to N-channel open-drain outputs (EVDD withstand                                     |
| P76             |              |                    | KR6/INTP10/(RxD2)            | voltage).                                                                           |
| P77             |              |                    | KR7/INTP11/(TxD2)            |                                                                                     |
| P120            | Input/output | Analog<br>function | ANI14/VCOUT0                 | Port 12                                                                             |
| P121            |              |                    | X1                           | port                                                                                |
| P122            |              |                    | X2/EXCLK                     | Only the P120 can specify inputs or outputs. Only                                   |
| P123            | input        | Input port         | XT1                          | the input port of the P120 can be set by software                                   |
| P124            |              |                    | XT2/EXCLKS                   | to use the internal pull-up resistor. The P120 can be set to an analog input.       |
| D120            | outout       | Output             |                              | Port 13                                                                             |
| P130            | ουιρυι       | port               |                              | 1-bit output dedicated port and 2-bit input/output                                  |
| P136            |              |                    | INTP0                        | port, P136 and P137 can be specified as input or                                    |
| P137            | Input/output | Input port         | SWCLK                        | output in bits. The input port can be set through<br>the software                   |
| D140            |              |                    |                              | , using an internal pull-up resistor.                                               |
| P140            | Input/output | Input port         |                              | Full 14                                                                             |
| P141            |              |                    | CLKBUZ1/INTP7                | A 4-bit input/output port that can be specified as                                  |



| P146      |       | Analog | ANI15       | an input or output in bits. The input port can be set |  |  |
|-----------|-------|--------|-------------|-------------------------------------------------------|--|--|
| D.4.47    |       | Analog | Analog      | by software using internal pull-up resistors.         |  |  |
| P147      | P147  |        | ANI12/VREF0 | P146, P147 can be set to analog input.                |  |  |
|           |       |        |             | An input pin dedicated to external reset, which       |  |  |
| RESETB in | input | _      | _           | must be connected to VDD directly or via a            |  |  |
|           |       |        |             | resistor when no external reset is used.              |  |  |

- 1. Set each pin to digital or analog (in bits) via port mode control register x (PMCx).
- 2. For a description of the multiplexing function, see "4.2 Port Multiplexing Function".
- 3. The functions in Table () above can be assigned by setting the peripheral I/O redirection registers.



## 4.1.2 80 Pin Product Pin Function Description

(1/3)

| Function<br>name   | Input/output        | Relieve<br>After<br>reset               | Multiplexing function                                                                                                                                           | Description of the feature                                                                                                                                            |  |  |
|--------------------|---------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| P00                |                     | Input                                   | TI00/TBCLK0/(TAO)/(INTP8)                                                                                                                                       | Port 0                                                                                                                                                                |  |  |
| P01                |                     | port                                    | TO00/TBCLK1/TAIO/(INTP10)                                                                                                                                       | A 7-bit input/output port that can be                                                                                                                                 |  |  |
| P02                |                     |                                         | ANI11/SDO10/TXD1/VCIN10/CTxD0                                                                                                                                   | specified as an input or output in<br>bits. The input port can be set by                                                                                              |  |  |
| P03                |                     | Analog<br>function                      | ANI10/SDI10/RXD1/SDA10/VCIN11/CRxD0                                                                                                                             | software using internal pull-up<br>resistors.                                                                                                                         |  |  |
| P04                | Input/output        | ranotion                                | ANI13/SCLK10/SCL10                                                                                                                                              | The inputs for P01, P03, and P04                                                                                                                                      |  |  |
| P05                |                     |                                         | (INTP10)/TI17/TO17                                                                                                                                              | can be set to TTL Input buffering.                                                                                                                                    |  |  |
| P06                |                     | Input<br>port                           | (INTP11)/(TAIO)                                                                                                                                                 | The outputs of P00 and P02~P04<br>can be set to N-channel open-drain<br>output (EV <sub>DD</sub> withstand voltage).<br>P02, P03, P04 can be set as analog<br>inputs. |  |  |
| P10                |                     | Analog                                  | SCLK11/SCL11/TMIOB1/ANI9/(TXD2)                                                                                                                                 | Port 1                                                                                                                                                                |  |  |
| P11                |                     | function                                | (RxD0)/SDI11/SDA11/TMIOD1/(TMIOA1)/ANI8                                                                                                                         | An 8-bit input/output port that can                                                                                                                                   |  |  |
| P12                |                     |                                         | (TxD0)/SDO11/TMIOA1/(TMIOB0)/(INTP5)                                                                                                                            | bits. The input port can be set by                                                                                                                                    |  |  |
| P13                |                     |                                         | TXD2/SDO20/TMIOC1/(TMIOD1)                                                                                                                                      | software using internal pull-up                                                                                                                                       |  |  |
| P14                |                     |                                         | RXD2/SDI20/SDA20/TMIOB0/(TMIOC1)/(SCLA0)                                                                                                                        | The inputs for P10 and P14~P17                                                                                                                                        |  |  |
| P15                | Input/output        | Input                                   | SCLK20/SCL20/TMIOD0/(SDAA0)                                                                                                                                     | can be set to TTL                                                                                                                                                     |  |  |
| P16                |                     | port                                    | TI01/TO01/INTP5/TMIOC0/(SDI00)/(RXD0)<br>/(TMIOA1)                                                                                                              | The outputs of P10, P11, P13 to<br>P15, and P17 can be set to N-                                                                                                      |  |  |
| P17                |                     |                                         | TI02/TO02/TMIOA0/TMCLK/(SDO00)<br>/(TXD0)/(TMIOD0)                                                                                                              | channel open-drain outputs (EV <sub>DD</sub> withstand voltage).<br>P10 and P11 can be set to analog inputs.                                                          |  |  |
| P20                |                     |                                         | ANI0/AVREFP/VCIN12/(INTP11)                                                                                                                                     |                                                                                                                                                                       |  |  |
| P21                |                     |                                         | ANI1/AVREFM/VCIN13                                                                                                                                              |                                                                                                                                                                       |  |  |
| P22                |                     |                                         | ANI2/ANO0/PGA0IN/VCIN0                                                                                                                                          | Port 2                                                                                                                                                                |  |  |
| P23                | Input/output        | Analog                                  | ANI3/ANO1/PGA0GND                                                                                                                                               | An 8-bit input/output port that can                                                                                                                                   |  |  |
| P24                | mputouput           | function                                | ANI4/PGA1IN                                                                                                                                                     | be specified as an input or output in                                                                                                                                 |  |  |
| P25                |                     |                                         | ANI5/PGA1GND                                                                                                                                                    | bits. Can be set to analog input.                                                                                                                                     |  |  |
| P26                |                     |                                         | ANI6                                                                                                                                                            |                                                                                                                                                                       |  |  |
| P27                |                     |                                         | ANI7                                                                                                                                                            |                                                                                                                                                                       |  |  |
| P30                |                     |                                         | INTP3/RTC1HZ/SCLK00/SCL00/TAO                                                                                                                                   | Port 3                                                                                                                                                                |  |  |
| 1.00               |                     |                                         | /(TMIOB1)                                                                                                                                                       | A 2-bit input/output port that can be specified as an input or output in                                                                                              |  |  |
| Input/outpu<br>P31 | utput Input<br>port | TI03/TO03/INTP4/(CLKBUZ0)/(TAIO)/VCOUT1 | bits. The input port can be set by<br>software using internal pull-up<br>resistors.<br>The input of the P30 can be set to<br>TTL input buffering. The output of |                                                                                                                                                                       |  |  |



|  |  | the P30 can be set to an N-channel            |
|--|--|-----------------------------------------------|
|  |  | open-drain output (EV <sub>DD</sub> withstand |
|  |  | voltage).                                     |

(2/3)

| Eurotion |              | Relieve            |                               |                                                                                                                                                                         |  |  |
|----------|--------------|--------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| name     | Input/output | After              | Multiplexing function         | Function                                                                                                                                                                |  |  |
| name     |              | reset              |                               |                                                                                                                                                                         |  |  |
| P40      |              |                    | SWDIO                         | Port 4                                                                                                                                                                  |  |  |
| P41      |              |                    | (TAIO)                        | A 6-bit input/output port that can be specified as                                                                                                                      |  |  |
| P42      | Input/output | Input              | (INTP8)                       | an input or output in bits. The input port can be                                                                                                                       |  |  |
| P43      | mpurouipui   | port               | (INTP9)/SCLK31/SCL31          | P43 and P44 inputs can be set to TTL input                                                                                                                              |  |  |
| P44      |              |                    | SDA31/SDI31                   | buffers and outputs to N-channel open-drain                                                                                                                             |  |  |
| P45      |              |                    | SDO31                         | outputs (EV <sub>DD</sub> withstand voltage).                                                                                                                           |  |  |
| P50      |              |                    | INTP1/SDI00/RXD0/SDA00        | Dott 5                                                                                                                                                                  |  |  |
| F30      |              |                    | /TBIO0/(TAO)/(TMIOC1)/(CRxD0) | A 6-bit input/output port that can be specified as                                                                                                                      |  |  |
| DE1      |              |                    | INTP2/SDO00/TXD0/TBIO1        | an input or output in bits. The input port can be                                                                                                                       |  |  |
| F31      | Innut/output | Input              | /(TMIOD1)/(CTxD0)             | set by software using internal pull-up resistors.                                                                                                                       |  |  |
| P52      | πραι/ουιραι  | port               | (INTP1)                       | The inputs of P50 and P55 can be set to TTL input buffers.                                                                                                              |  |  |
| P53      |              |                    | (INTP2)                       | The outputs of P50, P51, and P55 can be set to                                                                                                                          |  |  |
| P54      |              |                    | (INTP3)                       | N-channel open-drain outputs (EV <sub>DD</sub> withstand                                                                                                                |  |  |
| P55      |              |                    | (INTP4)/(CLKBUZ1)/(SCLK00)    | voltage).                                                                                                                                                               |  |  |
| P60      |              |                    | SCLA0                         |                                                                                                                                                                         |  |  |
| P61      |              |                    | SDAA0                         | Port 6                                                                                                                                                                  |  |  |
| P62      |              |                    | SS00/SCLA1                    | An 8-bit input/output port that can be specified as                                                                                                                     |  |  |
| P63      |              | Input              | SDAA1                         | an input or output in bits.                                                                                                                                             |  |  |
| P64      | Input/output | port               | TI10/TO10/CTxD1               | The output of P60~P63 is an N-channel open-<br>drain output (6V withstand voltage)                                                                                      |  |  |
| P65      |              |                    | TI11/TO11/CRxD1               | P64~ P67 input port can use internal pull                                                                                                                               |  |  |
| P66      |              |                    | TI12/TO12                     | resistance through software setting.                                                                                                                                    |  |  |
| P67      |              |                    | TI13/TO13                     |                                                                                                                                                                         |  |  |
| P70      |              |                    | KR0/SCLK21/SCL21/(VCOUT1)     |                                                                                                                                                                         |  |  |
| P71      |              |                    | KR1/SDI21/SDA21/(VCOUT0)      | Port 7                                                                                                                                                                  |  |  |
| P72      |              |                    | KR2/SDO21/(TXD1)              | An 8-bit input/output port that can be specified as                                                                                                                     |  |  |
| P73      | Innut/output | Input              | KR3/SDO01/(RXD1)              | an input or output in bits. The input port can be                                                                                                                       |  |  |
| P74      | input/output | port               | KR4/INTP8/SDI01/SDA01         | set by software using internal pull-up resistors.                                                                                                                       |  |  |
| P75      | 5<br>6       |                    | KR5/INTP9/SCLK01/SCL01        | programmed to N-channel open-drain outputs                                                                                                                              |  |  |
| P76      |              |                    | KR6/INTP10/(RxD2)             | (EV <sub>DD</sub> withstand voltage).                                                                                                                                   |  |  |
| P77      |              |                    | KR7/INTP11/(TxD2)             |                                                                                                                                                                         |  |  |
| P100     | Input/output | Analog<br>function | ANI16/TI14/TO14               | Port 10<br>A 1-bit input/output port that can be specified as<br>an input or output in bits. The input port can be<br>set by software using internal pull-up resistors. |  |  |
| P110     | Input/output | Input              | TI15/TO15                     | Port 11                                                                                                                                                                 |  |  |



| D111 | port |           | A 2-bit input/output port that can be specified as                                                  |
|------|------|-----------|-----------------------------------------------------------------------------------------------------|
| PTIT |      | 1110/1016 | an input or output in bits. The input port can be set by software using internal pull-up resistors. |

(3/3)

| Function<br>name | Input/output         | After the reset is released | Multiplexing function        | Function                                                                                                    |
|------------------|----------------------|-----------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------|
| P120             | Input/output         | Analog<br>function          | ANI14/VCOUT0                 | Port 12<br>1-bit input/output port and 4-bit input dedicated                                                |
| P121             |                      |                             | X1                           | port                                                                                                        |
| P122             | input                | Input                       | X2/EXCLK                     | Only the P120 can specify inputs or outputs. Only                                                           |
| P123             | input                | port                        | XT1                          | to use the internal pull-up resistor. The P120 can                                                          |
| P124             |                      |                             | XT2/EXCLKS                   | be set to an analog input.                                                                                  |
| P130             | output               | Output                      | _                            | Port 13<br>1-bit output dedicated port and 2-bit input/output                                               |
| P136             |                      | Input                       |                              | port, P136 and P137 can be specified as input or                                                            |
| P137             | Input/output         | port                        |                              | output in bits. The input port can be set by                                                                |
| P140             |                      | port                        |                              | Port 14                                                                                                     |
| P141             |                      | Input<br>port               | CLKBUZ1/INTP7/SPIHS1_NSS     | A 7-bit input/output port that can be specified as                                                          |
| P142             |                      |                             |                              | an input or output in bits. The input port can be                                                           |
| P143             |                      |                             |                              | set by software using internal pull-up resistors.                                                           |
| P144             | Input/output         |                             | ANI26/SDO30/TxD3/SPIHS1_MOSI | TTL inputs of the P142 and P143 can be set to                                                               |
| P146             |                      |                             | ANI15                        | The output of the P142, P143, P144 can be set to                                                            |
| P147             | - Analog<br>functior |                             | ANI12/VREF0                  | N-channel open-drain output (EV <sub>DD</sub> withstand voltage).<br>P146, P147 can be set to analog input. |
| P150             |                      |                             | ANI17                        | Port 15                                                                                                     |
| P151             |                      | Analog                      | ANI18                        | A 4-bit input/output port that can be specified as                                                          |
| P152             | Input/output         | function                    | ANI19                        | an input or output in bits. The input port can be                                                           |
| P153             |                      |                             | ANI20                        | Can be set to analog input.                                                                                 |
|                  |                      |                             |                              | The input dedicated pin for external reset must be                                                          |
| RESETB           | input                | —                           | <b> _</b>                    | connected to $V_{DD}$ directly or via a resistor when no                                                    |
|                  |                      |                             |                              | external reset is used.                                                                                     |

- 1. Set each pin to digital or analog (in bits) via port mode control register x (PMCx).
- 2. For a description of the multiplexing function, see "4.2 Port Multiplexing Function".
- 3. The functions in Table () above can be assigned by setting the peripheral I/O redirection registers.



## 4.1.3 100 Pin Product Pin Function Description

(1/3)

| Function |              | Relieve  |                                           |                                                                           |  |
|----------|--------------|----------|-------------------------------------------|---------------------------------------------------------------------------|--|
| name     | Input/output | After    | Multiplexing function                     | Description of the feature                                                |  |
| папе     |              |          |                                           |                                                                           |  |
| P00      |              | Input    | TI00/TBCLK0/(TAO)/(INTP8)                 | Port 0                                                                    |  |
| P01      |              | port     | TO00/TBCLK1/TAIO/(INTP10)                 | A 7-bit input/output port that can be                                     |  |
| P02      |              | Analasi  | ANI11/SDO10/TXD1/VCIN10/CTxD0             | specified as an input or output in                                        |  |
| P03      |              | Analog   | ANI10/SDI10/RXD1/SDA10/VCIN11/CRxD0       | bits. The input port can be set by                                        |  |
| P04      |              | TUTICUOT | ANI13/SCLK10/SCL10                        | software using internal pull-up                                           |  |
| P05      |              |          | (INTP10)/TI17/TO17/DBRDB                  |                                                                           |  |
|          | Input/output |          |                                           | The inputs for P01, P03, and P04 can                                      |  |
|          |              |          |                                           |                                                                           |  |
|          |              | Input    |                                           |                                                                           |  |
| P06      |              | port     | (INTP11)/(TAIO)/DBWRB                     | The outputs of P00 and P02~P04                                            |  |
|          |              |          |                                           | can be set to N-channel open-drain                                        |  |
|          |              |          |                                           | P02 P03 P04 can be set as analog                                          |  |
|          |              |          |                                           | inputs.                                                                   |  |
| P10      |              | Analog   | SCLK11/SCL11/TMIOB1/ANI9/(TXD2)           | Port 1                                                                    |  |
| P11      | -            | function | (RxD0)/SDI11/SDA11/TMIOD1/(TMIOA1)/ANI8   | An 8-bit input/output port that can be                                    |  |
| P12      | -            |          | (TxD0)/SD011/TMI0A1/(TMI0B0)/(INTP5)      | specified as an input or output in                                        |  |
| P13      | -            |          | TXD2/SD020/TMIOC1/(TMIOD1)                | bits. The input port can be set by                                        |  |
| P14      |              |          | RXD2/SDI20/SDA20/TMIOB0/(TMIOC1)/(SCI_A0) | software using internal pull-up                                           |  |
| P15      | -            |          | SCI K20/SCI 20/TMIOD0/(SDAA0)             | resistors.                                                                |  |
|          |              |          | TI01/TO01/INTP5/TMIOC0/(SDI00)/(RXD0)     | The inputs for P10 and P14~P17 can                                        |  |
| P16      | Input/output | Input    | /(TMIQA1)                                 | be set to TTL                                                             |  |
|          |              | port     |                                           | Input buffering.                                                          |  |
|          |              | pon      |                                           | The outputs of P10, P11, P13 to P15,                                      |  |
|          |              |          |                                           | and P17 can be set to N-channel                                           |  |
| P17      |              |          | 1102/1002/1010A0/1010ER/(SD000)           | open-drain outputs ( $EV_{DD}$ withstand                                  |  |
|          |              |          | /(TXD0)/(TMIOD0)                          | voltage).                                                                 |  |
|          |              |          |                                           | P10 and P11 can be set to analog                                          |  |
|          |              |          |                                           | inputs.                                                                   |  |
| P20      | -            |          | ANI0/AVREFP/VCIN12/(INTP11)               |                                                                           |  |
| P21      | 4            |          | ANI1/AVREFM/VCIN13                        | Port 2                                                                    |  |
| P22      | Input/output | Analog   | ANI2/ANO0/PGA0IN/VCIN0                    | An 8-bit input/output port that can be specified as an input or output in |  |
| P23      |              | function | ANI3/ANO1/PGA0GND                         |                                                                           |  |
| P24      |              |          | ANI4/PGA1IN                               | bits. Can be set to analog input.                                         |  |
| P25      |              |          | ANI5/PGA1GND                              |                                                                           |  |



| P26 |              |                     | ANI6                                        |                                               |
|-----|--------------|---------------------|---------------------------------------------|-----------------------------------------------|
| P27 |              |                     | ANI7                                        |                                               |
| Dao |              |                     | INTP3/RTC1HZ/SCLK00/SCL00/TAO               | Port 3                                        |
| P30 |              |                     | /(TMIOB1)                                   | A 2-bit input/output port that can be         |
|     |              |                     | TI03/TO03/INTP4/(CLKBUZ0)/(TAIO)<br>/VCOUT1 | specified as an input or output in            |
|     | Input/output | Input<br>ut<br>port |                                             | bits. The input port can be set by            |
|     |              |                     |                                             | software using internal pull-up               |
|     |              |                     |                                             | resistors.                                    |
| P31 |              |                     |                                             | The input of the P30 can be set to            |
|     |              |                     |                                             | TTL input buffering. The output of            |
|     |              |                     |                                             | the P30 can be set to an N-channel            |
|     |              |                     |                                             | open-drain output (EV <sub>DD</sub> withstand |
|     |              |                     |                                             | voltage).                                     |

|          |              |         |                                         | (2/3)                                                     |  |
|----------|--------------|---------|-----------------------------------------|-----------------------------------------------------------|--|
| Function | Innut/output | Relieve | Multipleving function                   | Function                                                  |  |
| name     | πραι/οαιραι  | Aller   |                                         | Function                                                  |  |
| P40      |              | Teset   | SWDIO                                   |                                                           |  |
| D/1      |              |         |                                         |                                                           |  |
| D40      |              |         |                                         | An 8-bit input/output port that can be                    |  |
| P42      |              |         |                                         | specified as an input or output in bits.                  |  |
| P43      |              | Input   | (INTP9)/SCLK31/SCL31                    | The input port can be set by software                     |  |
| P44      | Input/output | port    | SDA31/SDI31                             | using internal pull-up resistors.                         |  |
| P45      |              |         | SDO31                                   | P43 and P44 inputs can be set to TTL                      |  |
| P46      |              |         | CTxD2/(TI15/TO15)                       | input buffers and outputs to N-channel                    |  |
| P47      |              |         | CRxD2/(INTP2)                           | open-drain outputs (EV <sub>DD</sub> withstand voltage) . |  |
| DEO      | <u>,</u>     |         | INTP1/SDI00/RXD0/SDA00/TBIO0/(TAO)      | Port 5                                                    |  |
| P90      |              |         | /(TMIOC1)/(CRxD0)                       | A 6-bit input/output port that can be                     |  |
| P51      |              |         | INTP2/SDO00/TXD0/TBIO1/(TMIOD1)/(CTxD0) | specified as an input or output in bits.                  |  |
| P52      |              |         | (INTP1)/(SDO31)                         | The input port can be set by software                     |  |
| P53      |              | Input   | (INTP2)/(SDI31/SDA31)                   | using internal pull-up resistors.                         |  |
| P54      | Input/output | port    | (INTP3)/(SCLK31/SCL31)/SPIHS0_NSS       | The inputs of P50 and P55 can be set                      |  |
| P55      |              |         | (INTP4)/(CLKBUZ1)/(SCLK00)/SPIHS0_SCK   | to TTL input slowly                                       |  |
| P56      |              |         | SPIHS0_MISO/(INTP1)                     | Rush.                                                     |  |
|          |              |         |                                         | The outputs of P50, P51, and P55 can                      |  |
| P57      |              |         | SPIHS0_MOSI/(INTP3)                     | be set to N-channel open-drain outputs                    |  |
|          |              |         |                                         | (EV <sub>DD</sub> withstand voltage).                     |  |
| P60      |              | Input   | SCLA0                                   | Port 6                                                    |  |
| P61      | Input/output | nort    | SDAA0                                   | An 8-bit input/output port that can be                    |  |
| P62      |              | μοπ     | SS00/SCLA1                              | specified as an input or output in bits.                  |  |



| P63         |              |       | SDAA1                     | The output of P60~P63 is an N-                |
|-------------|--------------|-------|---------------------------|-----------------------------------------------|
| P64         |              |       | TI10/TO10/CTxD1           | channel open-drain output (6V                 |
| P65         |              |       | TI11/TO11/CRxD1           | withstand voltage).                           |
| P66         | -            |       | TI12/TO12                 | The input ports of P64~P67 can be set         |
| <b>D</b> 07 | -            |       | 714077040                 | by software to use internal pull-up           |
| P67         |              |       | 1113/1013                 | resistors.                                    |
| P70         |              |       | KR0/SCLK21/SCL21/(VCOUT1) | Port 7                                        |
| P71         |              |       | KR1/SDI21/SDA21/(VCOUT0)  | An 8-bit input/output port that can be        |
| P72         |              |       | KR2/SDO21/(TXD1)          | specified as an input or output in bits.      |
| P73         | Input/output | Input | KR3/SDO01/(RXD1)          | The input port can be set by software         |
| P74         | πραι/οαιραι  | port  | KR4/INTP8/SDI01/SDA01     | using internal pull-up resistors.             |
| P75         |              |       | KR5/INTP9/SCLK01/SCL01    | The outputs of P71 and P74 can be             |
| P76         |              |       | KR6/INTP10/(RxD2)         | programmed to N-channel open-drain            |
| P77         |              |       | KR7/INTP11/(TxD2)         | outputs (EV <sub>DD</sub> withstand voltage). |



|                  |                            |                           |                              | (3/3)                                                                                                                                                  |
|------------------|----------------------------|---------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function<br>name | Input/output               | Relieve<br>After<br>reset | Multiplexing function        | Function                                                                                                                                               |
| P80              |                            |                           | (SCLK10/SCL10)/DBD0          | Port 8                                                                                                                                                 |
| P81              |                            |                           | (SDI10/RXD1/SDA10)/DBD1      | An 8-bit input/output port that can be specified as                                                                                                    |
| P82              |                            |                           | (SDO10/TXD1)/DBD2            | an input or output in bits. The input port can be set                                                                                                  |
| P83              |                            | Input                     | DBD3                         | by software using internal pull-up resistors.                                                                                                          |
| P84              | Input/output               | port                      | (INTP6)/DBD4                 | The inputs of P80 and P81 can be set to TTL input                                                                                                      |
| P85              |                            |                           | (INTP7)/DBD5                 | buffers.                                                                                                                                               |
| P86              |                            |                           | (INTP8)/DBD6                 | The outputs of P80, P81, and P82 can be set to N-                                                                                                      |
| P87              |                            |                           | (INTP9)/DBD7                 | pressure).                                                                                                                                             |
| P100             |                            |                           | ANI16/TI14/TO14              | Port 10                                                                                                                                                |
| P101             | Input/output               | Analog                    | ANI24                        | A 3-bit input/output port that can be specified as an                                                                                                  |
| P102             | Πρανοαιραι                 | function                  | (TI16/TO16)/ANI25            | input or output in bits. The input port can be set by software using internal pull-up resistors.                                                       |
| P110             | Input/output Input port    |                           | TI15/TO15                    | Port 11                                                                                                                                                |
| P111             |                            |                           | TI16/TO16                    | A 2-bit input/output port that can be specified as an input or output in bits. The input port can be set by software using internal pull-up resistors. |
| P120             | Input/output               | Analog<br>function        | ANI14/VCOUT0                 | Port 12                                                                                                                                                |
| P121             |                            |                           | X1                           | 1-bit input/output port and 4-bit input dedicated                                                                                                      |
| P122             |                            |                           | X2/EXCLK                     | Only the P120 can specify inputs or outputs. Only                                                                                                      |
| P123             | input                      | Input                     | XT1                          | the input port of the P120 can be set by software to                                                                                                   |
| P124             | 124                        |                           | XT2/EXCLKS                   | use the internal pull-up resistor. The P120 can be set to an analog input.                                                                             |
| P130             | output                     | Output                    |                              | Port 13                                                                                                                                                |
| P136             |                            | ροπ                       |                              | 1-bit output dedicated port and 2-bit input/output                                                                                                     |
| P137             | Input/output Input<br>port |                           | INTP0/SWCLK/(SDI00)/(RXD0)   | port, P136 and P137 can be specified as input or<br>output in bits. The input port can be set by<br>software using internal pull-up resistors.         |
| P140             |                            |                           | CLKBUZ0/INTP6                | Port 14                                                                                                                                                |
| P141             |                            |                           | CLKBUZ1/INTP7/SPIHS1_NSS     | A 7-bit input/output port that can be specified as an                                                                                                  |
| P142             |                            | Input                     | SCLK30/SCL30/SPIHS1_SCK      | input or output in bits. The input port can be set by                                                                                                  |
| P143             |                            | port                      | SDI30/RxD3/SDA30/SPIHS1_MISO | software using internal pull-up resistors.                                                                                                             |
| P144             | Input/output               |                           | ANI26/SDO30/TxD3/SPIHS1_MOSI | The inputs of the P142 and P143 can be set to                                                                                                          |
| P145             |                            |                           | (TI17/TO17)/ANI27            | TTL input buffers.                                                                                                                                     |
| P146             |                            | Analog                    | ANI15                        | The output of the P142, P143, P144 can be set to                                                                                                       |
| P147             |                            | function                  | ANI12/VREF0                  | voltage).                                                                                                                                              |



|        |                |                    |       | P145, P146, P147 can be set to analog inputs.                                                                                   |
|--------|----------------|--------------------|-------|---------------------------------------------------------------------------------------------------------------------------------|
| P150   |                | Analog<br>function | ANI17 |                                                                                                                                 |
| P151   | Input/output f |                    | ANI18 | Port 15                                                                                                                         |
| P152   |                |                    | ANI19 | A 4-bit input/output port that can be specified as an                                                                           |
| P153   |                |                    | ANI20 | input or output in bits. The input port can be set by software using internal pull-up resistors.<br>Can be set to analog input. |
| P154   |                |                    | ANI21 |                                                                                                                                 |
| P155   |                |                    | ANI22 |                                                                                                                                 |
| P156   |                |                    | ANI23 |                                                                                                                                 |
|        |                |                    |       | The input dedicated pin for external reset must be                                                                              |
| RESETB | input          | —                  | —     | connected to VDD directly or via a resistor when                                                                                |
|        |                |                    |       | no external reset is used.                                                                                                      |

- 1. Set each pin to digital or analog (in bits) via port mode control register x (PMCx).
- 2. For a description of the multiplexing function, see "4.2 Port Multiplexing Function".
- 3. The functions in Table () above can be assigned by setting the peripheral I/O redirection registers.



## 4.2 Port Multiplexing Function

(1/2)

| The feature name                | Input/<br>output | Function                                                             |
|---------------------------------|------------------|----------------------------------------------------------------------|
| ANI0~ANI27                      | input            | The analog input of the A/D converter                                |
| ANO0, ANO1                      | output           | The output of the D/A converter                                      |
|                                 |                  | External interrupt request input                                     |
| INTP0~INTP11                    | input            | Designation of effective edges: ascending edges, falling             |
|                                 |                  | edges, rising and falling bilateral edges                            |
| VCIN0                           | input            | The analog voltage input for comparator 0                            |
| VCIN10, VCIN11, VCIN12, VCIN13  | input            | The analog voltage/reference input for comparator 1                  |
| VREF0                           | input            | The reference input for comparator 0                                 |
| VCOUT0, VCOUT1                  | output           | Comparator output                                                    |
| PGA0IN, PGA1IN                  | input            | PGA input                                                            |
| PGA0GND, PGA1GND                | input            | PGA reference input                                                  |
| KR0~KR7                         | input            | The key interrupts the input                                         |
| CLKBUZ0, CLKBUZ1                | output           | Clock output/buzzer output                                           |
| RTC1HZ                          | output           | Correction clock (1Hz) output for the real-time clock                |
|                                 | in must          | A active-low system reset input must be connected to VDD directly    |
| RESEIB                          | input            | or via a resistor when no external reset is used.                    |
| CRxD0, CRxD1, CRxD2             | input            | Serial data input for CAN                                            |
| CTxD0, CTxD1, CTxD2             | output           | Serial data output for CAN                                           |
|                                 | input            | Serial data input for UART0, UART1, UART2, and UART3                 |
| NXD0~NXD3                       | input            | interfaces                                                           |
| TxD0~TxD3                       | output           | Serial data output for UART0, UART1, UART2, and UART3                |
| SCL00, SCL01, SCL10, SCL11      | output           | Serial clock output for serial interface IIC00, IIC01, IIC10, IIC11, |
| SCL20, SCL21, SCL30, SCL31      | output           | IIC20, IIC21, IIC30, IIC31                                           |
| SDA00, SDA01, SDA10, SDA11,     | Input/output     | Serial data input/output of serial interfaces IIC00, IIC01, IIC10,   |
| SDA20, SDA21, SDA30, SDA31      | inputouput       | IIC11, IIC20, IIC21, IIC30, IIC31                                    |
| SCLK00, SCLK01, SCLK10, SCLK11, | Input/output     | Serial clock input/output for serial interface SSPI00, SSPI01,       |
| SCLK20, SCLK21, SCLK30, SCLK31  |                  | SSPI10, SSPI11, SSPI20, SSPI21, SSPI30, SSPI31                       |
| SDI00, SDI01, SDI10, SDI11,     | input            | Serial data input for serial interface SSPI00, SSPI01, SSPI10,       |
| SDI20, SDI21, SDI30, SDI31      |                  | SSPI11, SSPI20, SSPI21, SSPI30, SSPI31                               |
| SS00                            | input            | The chip select input for the serial interface SSPI00                |
| SDO00, SDO01, SDO10, SDO11,     |                  | SSPI00, SSPI01, SSPI10, SSPI11, SSPI20, SSPI21,                      |
| SDO20, SDO21, SDO30, SDO31      |                  | Serial data output for SSPI30 and SSPI31                             |
| DBD0~DBD7                       | Input/output     | LCD bus data input/output                                            |
| DBRDB                           | output           | L-CD bus read enable output                                          |
| DBWRB                           | output           | LCD bus write enable output                                          |
| SCLA0, SCLA1                    | Input/output     | Clock input/output of serial interface IICA0 and IICA1               |
| SDAA0, SDAA1                    | Input/output     | Serial data input/output of serial interface IICA0 and IICA1         |



| The feature name                                                        | Input/output                                                                  | function                                                                                   |  |  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| SPIHS0_NSS                                                              | input                                                                         | The chip select input for the serial interface SPIHS0                                      |  |  |
| SPIHS0_SCK                                                              | Input/output                                                                  | Serial clock input/output of serial interface SPIHS0                                       |  |  |
| SPIHS0_MISO                                                             | Input/output                                                                  | Serial data input/output of serial interface SPIHS0                                        |  |  |
| SPIHS0_MOSI                                                             | Input/output                                                                  | Serial data input/output of serial interface SPIHS 0                                       |  |  |
| SPIHS1_NSS                                                              | input                                                                         | Chip select input for the serial interface SPIHS 1                                         |  |  |
| SPIHS1_SCK                                                              | Input/output                                                                  | Serial clock input/output of serial interface SPIHS 1                                      |  |  |
| SPIHS1_MISO                                                             | Input/output                                                                  | Serial data input/output of serial interface SPIHS 1                                       |  |  |
| SPIHS1_MOSI                                                             | Input/output                                                                  | Serial data input/output of serial interface SPIHS 1                                       |  |  |
| TUE00~TI03                                                              | input                                                                         | External counting clock/capture trigger input for 16-bit timer Timer4                      |  |  |
| TO00~TO03                                                               | output                                                                        | Timer output of the 16-bit timer Timer4                                                    |  |  |
| TI10~TI17                                                               | input                                                                         | External count clock/capture trigger input for 16-bit timer Timer8                         |  |  |
| TO10~TO17                                                               | output                                                                        | Timer output of the 16-bit timer Timer8                                                    |  |  |
| ΤΑΙΟ                                                                    | Input/output                                                                  | The input/output of Timer TimerA                                                           |  |  |
| MAN                                                                     | output                                                                        | The output of timer TimerA                                                                 |  |  |
| TMCLK                                                                   | input                                                                         | The external clock input for TimerM for the timer                                          |  |  |
| TMIOA0, TMIOB0,<br>TMIOC0, TMIOD0,<br>TMIOA1, TMIOB1,<br>TMIOC1, TMIOD1 | Input/output                                                                  | Timer TimerM input/output                                                                  |  |  |
| TBIO0, TBIO1                                                            | Input/output                                                                  | The input/output of timer TimerB                                                           |  |  |
| TBCLK0, TBCLK1                                                          | input                                                                         | The external clock input for TimerB for the timer                                          |  |  |
| X1, X2                                                                  | _                                                                             | Connect the resonator used for the master system clock.                                    |  |  |
| EXCLK                                                                   | input                                                                         | The external clock input to the master system clock                                        |  |  |
| XT1, XT2                                                                | _                                                                             | Connect a resonator for the subsystem clock.                                               |  |  |
| EXCLKS                                                                  | input                                                                         | An external clock input to the secondary system clock                                      |  |  |
|                                                                         |                                                                               | <64, 80Pin product >:                                                                      |  |  |
| Indd                                                                    | —                                                                             | Power supplies for P20 to P27, P121 to P124, P137, and RESETB pins                         |  |  |
| EV <sub>DD</sub>                                                        | Power supplies for port pins (except P20 to P27, P121 to P124, P137, RESETB). |                                                                                            |  |  |
| AVREFP                                                                  | input                                                                         | The positive (+) reference input of the A/D converter                                      |  |  |
| AVREFM                                                                  | input                                                                         | The negative (-) reference voltage input for the A/D converter                             |  |  |
|                                                                         |                                                                               | <64, 80Pin product >:                                                                      |  |  |
| Vss                                                                     | _                                                                             | Ground potentials of the P20 to P27, P121 to P124, P137 and RESETB pins                    |  |  |
| EV <sub>SS</sub>                                                        | _                                                                             | The ground potential of the port pins (except P20 to P27, P121 to P124, P137, and RESETB). |  |  |
| SWDIO                                                                   | Input/output                                                                  | SWD data interface                                                                         |  |  |
| SWCLK                                                                   | input                                                                         | SWD clock interface                                                                        |  |  |

Note: As a countermeasure to noise and lockout, the bypass capacitor must be connected at the shortest distance between  $V_{DD}$ - $V_{SS}$ ,  $EV_{DD}$ - $EV_{SS}$  and with coarse wiring 0.1uF or so).



## 4.3 The Port Type

Type 1: Bidirectional I/O capability





#### Type 2: NOD functionality





#### Type 3: Input function only







#### Type 4: Output function only



#### Type 5: RESET function





## **5 Feature Overview**

### 5.1 ARM® Cortex-M0®+ Core

ARM's Cortex-M0+ processor is a new generation of ARM processors for embedded systems. It provides a low-cost platform designed to meet the needs of low pin count and low power microcontrollers while providing excellent computing performance and advanced system response to interrupts.

The Cortex-M0+ processor is a 32-bit RISC processor that provides superior code efficiency and delivers the expected high performance of the ARM core Differs from 8-bit and 16-bit devices of the same memory size. The Cortex-M0+) processor has 32 address lines and up to 4G of storage.

The Cortex-M0+ processor in this product integrates the MPU memory protection unit: providing a hardware way to manage and protect memory and control access rights.

The BAT32A279 uses an embedded ARM core and is therefore compatible with all ARM tools and software.

## 5.2 Memory

### 5.2.1 Flash Memory

The BAT32A279 has built-in flash memory that can be programmed, erased, and rewritten. It has the following functions:

- > Programs and data share 512K storage space.
- > 20KB dedicated data Flash memory.
- > Page erasure is supported and the size of each page is 1024byte.
- Supports byte/half-word/word (32bit) programming.

### 5.2.2 SRAM

The BAT32A279 has a built-in 64K byte embedded SRAM.



## 5.3 Enhanced DMA Controller

The built-in enhanced DMA (Direct Memory Access) controller enables data transfer between memories without using a CPU.

- Supports activation of DMA via peripheral function interrupts, enabling real-time control through communication, timers, and A/D.
- > The source/destination field is optional for the full address space range (when the flash field is the destination address, flash needs to be preset as the programming mode).
- Supports 4 transfer modes (normal transfer mode, repeat transfer mode, block transfer mode, and chain transfer mode).

## 5.4 Linkage Controller

The linkage controller links the events output by each peripheral function with the peripheral function trigger source. This enables collaborative operation between peripheral functions without using the CPU.

The UMC has the following functions:

- > It can link event signals together to achieve the linkage of peripheral functions.
- > There are 23 types of event inputs and 10 kinds of event triggers.

## 5.5 The Clock Generation and Start Up

A clock generation circuit is a circuit that generates a clock to the CPU and peripheral hardware. There are three types of system clock and clock oscillation circuitry.

## 5.5.1 The Master System Clock

- X1 oscillation circuit: Clock oscillations of 1 to 20 MHz can be generated by connecting resonators to pins (X1 and X2) and can be executed Deep sleep command or set MSTOP to stop oscillation.
- High Speed Internal Oscillator (High Speed OCO): Oscillates by selecting the frequency via option bytes. After the reset is released, the CPU starts running by default with this high-speed internal oscillator clock. Oscillation can be stopped by executing a deep sleep command or setting the HIOSTOP bit. The frequency set by the option byte can be changed through the frequency selection register of the high-speed internal oscillator. The maximum frequency is 64Mhz and the accuracy is ± 1.0%.
- An external clock is input from pin (X2) (1 to 20MHz) and can be used by executing a deep sleep command or setting MSTOP The bit sets the input of the external master system clock to be invalid.



## 5.5.2 Auxiliary System Clock

- XT1 Oscillation Circuit: Generates a clock oscillation of 32.768 KHz from a resonator connected to pins (XT1 and XT2) of 32.768KHz, and can stop the oscillation by setting the XTSTOP bit.
- Input to the external clock by pin (XT2): 32.768KHz, and the input to the external clock can be set to invalidate by setting the XTSTOP bit.

## 5.5.3 Low-speed Internal Oscillator Clock

- Low-speed internal oscillator (low-speed OCO): Generates a clock oscillation of 15KHz (typical). You cannot use a low-speed internal oscillator clock as a CPU clock. Only the following peripheral hardware can operate through a low-speed internal oscillator clock:
- Watchdog Timer (WWDT)
- Real-Time Clock (RTC)
- > 15-bit interval timer
- Timer TimerA

## 5.5.4 PLL Clock

PLL: Can be used as a system clock. The PLL can select an external clock from the source clock or an internal high-speed oscillator clock.



### 5.6 Power Management

### 5.6.1 Power Supply Mode

 $V_{DD}$ : External power supply with a voltage range of 2.0 to 5.5V. EV<sub>DD</sub>: External power supply with a voltage range of 2.0 to 5.5V. The voltage at the V<sub>DD</sub> pin must be equal to the voltage at the EV<sub>DD</sub> pin.

## 5.6.2 Power-on Reset

The power-on reset circuit (POL) has the following functions.

- An internal reset signal is generated when the power is turned on. If the supply voltage (V<sub>DD</sub>) is greater than the sense voltage (V<sub>POL</sub>), the reset is released. However, the reset state must be maintained by voltage detection circuitry or an external reset before the operating voltage range is reached.
- Drag the supply voltage (V<sub>DD</sub>) and the sense voltage(V<sub>PDR</sub>)Make a comparison, When V<sub>DD</sub> < V<sub>PDR</sub>, An internal reset signal is generated. But, When the power supply drops, must be less than the operating voltage range, Transfer toDeep sleepmode, or set to reset via voltage detection circuit or external reset. If you want to start running again, you must confirm that the supply voltage has returned to the operating voltage range.

## 5.6.3 Voltage Detection

The voltage detection circuit sets the operating mode and sense voltage ( $V_{LVDH}$ ,  $V_{LVDL}$ ,  $V_{LVD}$ ) via option bytes. The voltage detection (LVD) circuit has the following functions:

- Compare the supply voltage (V<sub>DD</sub>) with the sense voltage (V<sub>LVDH</sub>, V<sub>LVDL</sub>, V<sub>LVD</sub>), An internal reset or interrupt request signal is generated.
- The sense voltage of the supply voltage (VLVDH, VLVDL, VLVD) can be selected by option bytes to select the sense level.
- > Runs in deep sleep mode.
- When the power supply rises, the reset state must be maintained by voltage detection circuitry or external reset before reaching the operating voltage range. When the supply drops, it must be transferred to deep sleep mode before it is less than the operating voltage range, or set to reset by voltage detection circuitry or an external reset.
- > The operating voltage range varies depending on the user option byte setting.



## 5.7 Low Power Mode

The BAT32A279 supports two low-power modes for the best compromise between low power consumption, short start-up times, and available wake-up sources:

- Sleep Mode: Enters sleep mode by executing sleep commands. Sleep mode is the mode that stops the CPU from running the clock. Each clock continues to oscillate if the high-speed system clock oscillation circuit, high-speed internal oscillator, or subsystem clock oscillation circuit is oscillating before setting sleep mode. Although this mode does not allow the operating current to drop to the level of deep sleep mode, it is an effective mode when you want to restart processing immediately with an interrupt request or if you want to do intermittent operation frequently.
- Deep Sleep Mode: Enter Deep Sleep Mode by executing the Deep Sleep command. Deep sleep mode is a mode that stops the oscillation of the high-speed system clock oscillation circuit and the high-speed internal oscillator and stops the entire system. It can greatly reduce the operating current of the chip. Because deep sleep mode can be lifted by interrupt requests, it can also be run intermittently. However, in the case of the X1 clock, because the wait time to ensure oscillation stability is ensured when the deep sleep mode is released, it is necessary to start processing immediately if you must request an interrupt You must select the sleep mode.

In either mode, the registers, flags, and data memory all remain in the pre-standby mode setting, and also maintain the state of the output latches and output buffers of the input/output ports.

## 5.8 Reset Function

The following 7 methods generate a reset signal.

- 1) An external reset is entered via the RESETB pin.
- 2) An internal reset is generated by a program runaway detection of the watchdog timer.
- 3) An internal reset is generated by comparing the supply voltage to the sense voltage of the poweron reset (POR) circuit.
- 4) An internal reset is generated by comparing the supply voltage of the voltage detection circuit (LVD) with the sense voltage.
- 5) Internal reset due to RAM parity error.
- 6) Internal reset due to access to illegal memory.
- 7) Software reset.

Internal reset is the same as external reset, and after the reset signal is generated, the program is executed from the addresses written in the addresses 0000H and 0001H.



## 5.9 Interrupt Function

The Cortex-M0+ processor has a built-in Nested Vector Interrupt Controller (NVIC) that supports up to 32 interrupt request (IRQ) inputs, as well as one unmaskable interrupt (NMI) input, as well as multiple internal exceptions.

This product extends 32 maskable interrupt requests (IRQs) and 1 non-maskable interrupt (NMI) to support up to 64 maskable interrupt sources and one non-maskable interrupt source. The actual number of interrupt sources varies by product.

|                   |          | 64 pins | 80 pins | 100 pins |
|-------------------|----------|---------|---------|----------|
| Interrupts can be | external | 13      | 13      | 13       |
| masked            | internal | 33      | 44      | 58       |

## 5.10 Real-time Clock (RTC).

The real-time clock (RTC) has the following functions:

- > Counters with year, month, day, day, hour, minute, and second.
- Fixed-cycle interrupt function (period: 0.5 seconds, 1 second, 1 minute, 1 hour, 1 day, 1 month).
- > Alarm interrupt function (alarm: week, hour, minute).
- > 1Hz pin output function.
- Supports crossover of the secondary system clock or master system clock as the operating clock of the RTC.
- > The real-time clock interrupt signal (INTRTC) can be used as a wake-up in deep sleep mode.
- Supports a wide range of clock correction functions.

Year, month, day, hour, minute, and second counts can only be performed if the secondary system clock (32.768KHz) or the crossover of the primary system clock is selected as the operating clock of the RTC. When a low-speed internal oscillator clock (15KHz) is selected, only the fixed-cycle interrupt function can be used.

## 5.11 Watchdog Timer

1-channel WWDT, 17-bitwatchdog timer runs with option byte setting count. The watchdog timer operates with a low-speed internal oscillator clock (15KHz). A watchdog timer is used to detect a program that is out of control. When a program runaway is detected, an internal reset signal is generated.

The following situations are judged to be out of control of the program:

- > When the watchdog timer counter overflows
- > When performing a 1-bit operation instruction on the Allow Register (WDTE) of the watchdog timer
- > When writing data other than "ACH" to the WDTE register
- > When writing data to the WDTE register while the window is closed



## 5.12 SysTick Timer

This timer is dedicated to RTOS, but can also be used as a standard decrement counter.

It features a 24-bit decreasing counter with a self-loading capacity counter that generates a shieldable system interrupt when the self-loading capacity counter reaches 0.


#### 5.13 Timer Timer4

This product contains four 16-bit timer timer unit Timer4. Each 16-bit timer is called a "channel" and can be used as a separate timer or as a combination of multiple channels for advanced timer functionality.

# 5.13.1 Independent Channel Operation Function

The independent channel operation function is a function that can use any channel independently of other channel operating modes. The stand-alone channel operation function can be used as the following modes:

- 1) Interval Timer: Can be used as a reference timer for interrupting at fixed intervals (INTTMs).
- 2) Square Wave Output: Whenever an INTTM interrupt is generated, a flip is triggered to output a square wave of 50% duty cycle from the timer output pin (TO).
- External Event Counter: Counts the effective edge of the input signal at the timer input pin (TI) and can be used as an event counter to generate an interrupt if a specified number of times are reached.
- 4) Divider function (Channel 0 of unit 0 only): The input clock of the timer input pin (TI00) is divided and then output from the output pin (TO00).
- 5) Measurement of input pulse interval: The interval between input pulses is measured by counting at the effective edge of the input pulse signal at the timer input pin (TI) and the effective edge of the next pulse is captured with the count value.
- 6) Measurement of the high/low width of the input signal: The width of the input signal is measured by counting at one edge of the input signal at the timer input pin (TI) and capturing the count value on the other edge.
- 7) Delay Counter: The active edge of the input signal at the timer input pin (TI) begins to count and generates an interrupt after any delay period has elapsed.

## 5.13.2 Multi-channel Linkage Operation Function

The multi-channel linkage operation function can combine the functions implemented by combining the master channel (the reference timer for the main control period) and the slave channel (the timer that operates in accordance with the main control channel). The multi-channel linkage operation function can be used as the following modes:

- 1) Single-trigger pulse output: Two channels are used in pairs to generate a single-trigger pulse that arbitrarily sets the output timing and pulse width.
- 2) PWM (Pulse Width Modulation) output: 2 channels are used in pairs to generate pulses that can set the period and duty cycle arbitrarily.
- Multiple PWM (Pulse Width Modulation) output: Up to 3 can be generated in fixed periods by extending the PWM function and using 1 master channel and multiple slave channels PWM signal for any duty cycle.



### 5.13.3 8-bit Timer Operation Function

The 8-bit timer run function uses a 16-bit timer channel as a function for two 8-bit timer channels. (Only Channel 1 and Channel 3 can be used).

#### 5.13.4 LIN-bus Support Functionality

Unit Timer4 can be used to check whether the received signal in LIN-bus communication is suitable for the LIN-bus communication format.

- Detection of wake-up signals: The low width is measured by counting the beginning of the falling edge of the input signal at the UART serial data input pin (RxD) and capturing the count value on the rising edge. If the width of the low level is greater than or equal to a fixed value, it is considered a wake-up signal.
- 2) Detection of the spacer field: After detecting a wake-up signal, the low-level width is measured by counting from the falling edge of the input signal at the UART serial data input pin (RxD) and capturing the count value on the rising edge. If the low-level width is greater than or equal to a fixed value, it is considered to be a spacer field.
- 3) Measurement of synchronous field pulse width: After detecting the interval field, measure the low and high width of the input signal of the UART serial data input pin (RxD). The baud rate is calculated based on the bit interval of the synchronous field measured in this way.

#### 5.14 Timer Timer8

The 80-pin product adds Timer 8, a built-in timer unit containing eight 16-bit timers. Each 16-bit timer is called a "channel" and can be used as a separate timer or as a combination of multiple channels for advanced timer functionality.

## 5.14.1 Independent Channel Operation Function

The independent channel operation function is a function that can use any channel independently of other channel operating modes. The stand-alone channel operation function can be used as the following modes:

- 1) Interval Timer: Can be used as a reference timer for interrupting at fixed intervals (INTTM).
- 2) Square Wave Output: Whenever an INTTM interrupt is generated, a flip is triggered to output a square wave of 50% duty cycle from the timer output pin (TO).
- External Event Counter: Counts the effective edge of the input signal at the timer input pin (TI) and can be used as an event counter to generate an interrupt if a specified number of times are reached.
- 4) Measurement of input pulse interval: The interval between input pulses is measured by counting at the effective edge of the input pulse signal at the timer input pin (TI) and the effective edge of the next pulse is captured with the count value.
- 5) Measurement of the high/low width of the input signal: The width of the input signal is measured by counting at one edge of the input signal at the timer input pin (TI) and capturing the count value on the other edge.
- 6) Delay Counter: The active edge of the input signal at the timer input pin (TI) begins to count and generates an interrupt after any delay period has elapsed.

# 5.14.2 Multi-channel Linkage Operation Function

The multi-channel linkage operation function can combine the functions implemented by combining the master channel (the reference timer for the main control period) and the slave channel (the timer that operates in accordance with the main control channel). The multi-channel linkage operation function can be used as the following modes:

- 1) Single-trigger pulse output: Two channels are used in pairs to generate a single-trigger pulse that arbitrarily sets the output timing and pulse width.
- 2) PWM (Pulse Width Modulation) output: 2 channels are used in pairs to generate pulses that can set the period and duty cycle arbitrarily.
- Multiple PWM (Pulse Width Modulation) output: Up to 7 can be generated in a fixed period by extending the PWM function and using 1 master channel and multiple slave channels PWM signal for any duty cycle.

## 5.14.3 8-bit timer Operation Function

The 8-bit timer run function uses a 16-bit timer channel as a function for two 8-bit timer channels. (Only Channel 1 and Channel 3 can be used).



#### 5.15 Timer Timer A

This product contains a 16bit timer, TimerA, consisting of a reload register and a decrement counter. Available for the following modes of operation:

- > Timer mode: Count the count source (the count source can be a clock or an external event)
- > Pulse output mode: Counts the counting source and outputs the pulse in case of overflow
- > Event Counting Mode: External events are counted and can work in deep sleep mode.
- > Pulse Width Measurement Mode: The external pulse width is measured
- > Pulse Period Measurement Mode: Measure the external pulse period

#### 5.16 Timer TimerM

This product has a built-in 2-channel 16bit timer TimerM optimized for motor control, which has the following 4 operating modes:

- Timer mode:
  - Input capture function (triggered by an external signal to retrieve the count value to the register).
  - Output comparison function (detects whether the count value and register value are the same, and can change the output of the pin during detection).
  - PWM function (continuous output of arbitrary pulse width)
- Reset synchronous PWM mode: output sawtooth modulation, three-phase waveform without dead time (6pcs)
- Complementary PWM mode: output triangular modulation, three-phase waveform with dead time (6pcs)
- PWM3 Mode: Output Phase PWM Waveform (2pcs)

## 5.17 Timer TimerB

This product has a built-in 16bit timer TimerB, which has the following 3 modes:

- Timer mode:
  - The input snap function counts on both sides of the rise, fall, or rise/fall edges.
  - Output comparison function "L" level output, "H" level output, or alternate output
- > PWM mode: PWM output capable of any duty cycle.
- > Phase counting mode: The count value of a 2-phase encoder can be measured automatically.

#### 5.18 Timer TimerC

This product contains a 16bit timer, TimerC, which can be triggered by software, comparator, or timer TimerM for input capture.

#### 5.19 15-bit Interval Timer

A built-in 15-bit interval timer generates an interrupt (INTIT) at any pre-set interval that can be used to wake up from deep sleep mode.

# 5.20 Clock Output/Buzzer Output Control Circuitry

The clock output controller is used to provide the clock to the peripheral IC, and the buzzer output controller is used to output the square wave of the buzzer frequency. Clock output or buzzer output is implemented by a dedicated pin.

Cmsemicon®

# 5.21 Universal Serial Communication Unit

This product has built-in 4 universal serial communication units, each unit has a maximum of 4 serial communication channels. Enables communication functions of standard SPI, Simple SPI, UART, and Simple I<sup>2</sup>C. Taking the 80pin product as an example, the function allocation of each channel is as follows:

# 5.21.1 3-Wire Serial Interface (Simple SPI)

The serial clock (SCK) output of the master device transmits and receives data synchronously.

This uses 1 serial clock (SCK), 1 transmit serial data (SO), and 1 receive serial data (SI) for a total of 3 A clock-synchronous communication interface for communication lines to communicate.

[Send and receive data].

- > 7-16 bits of data length
- > Phase control of sending and receiving data
- MSB/LSB preferred choice

[Clock Control].

- > The choice of master or slave
- Phase control of the input/output clock
- > The transfer period generated by the prescaler and the in-channel counter
- Maximum transfer rate
  Master communication: Max. F<sub>CLK</sub>/2
  Slave communication: Max. F<sub>MCK</sub>/6

[Interrupt function].

End of transfer interrupt, buffer empty interrupt

[Error detection flag].

Overflow error



### 5.21.2 SPI with Slave Chip Select

SPI serial communication interface supporting slave chip select input. This uses a slave chip select input (SSI), a serial clock (SCK), a transmit serial data (SO), and a receive serial data (SI) together Clock-synchronous communication interface for communication of 4 communication lines.

[Send and receive data].

- > 7-16 bits of data length
- > Phase control of sending and receiving data
- MSB/LSB preferred choice
- Level settings for sending and receiving data

[Clock Control].

- Phase control of the input/output clock
- > The transfer period generated by the prescaler and the in-channel counter
- > Maximum transfer rate

Slave communication: Maximum F<sub>MCK</sub>/6

[Interrupt function].

> End of transfer interrupt, buffer empty interrupt

[Error detection flag].

Overflow error

#### 5.21.3 UART

The function of asynchronous communication through two lines of serial data transmission (TxD) and serial data receiving (RxD). Using these two communication lines, data is sent and received asynchronously (using the internal baud rate) with other communicating parties in a data frame (consisting of a start bit, data, parity bit, and stop bit). Full-duplex UART communication can be achieved by using two channels dedicated to transmit (even channels) and receive private (odd channels), and can also be achieved by combining Timer4 units and external interrupts (INTP0) to support LIN-bus.

[Send and receive data].

- > 7-bit, 8-bit, 9-bit, and 1-6-bit data length
- MSB/LSB preferred choice
- > Level setting and inversion selection of transmitted and received data
- Additional parity functions for parity bits
- > Attaching of stop bits, detection of stop bits

#### [Interrupt function].

- > End of transfer interrupt, buffer empty interrupt
- Error interrupts caused by frame errors, parity errors, or overflow errors

[Error detection flag].

> Frame error, parity error, overflow error

[LIN-bus function].

- Detection of wake-up signals
- Detection of spaced field (BF).
- Measurement of the synchronous field, calculation of the baud rate



### 5.21.4 Simple I<sup>2</sup>C

The function of clock synchronization communication with multiple devices through two lines of serial clock (SCL) and serial data (SDA). Because this simple I<sup>2</sup>C is designed for single communication with devices such as flash memory and A/D converters, it can only be used as a master device. The start and stop conditions, like the operating control registers, must comply with the AC characteristics and be handled by software.

[Send and receive data].

- > Main control transmission, master receiving (limited to single main control master function)
- > ACK output function, ACK detection function
- 8 bits of data length (when sending the address, specify the address with a height of 7 bits, and use the lowest bit for R/W control).
- > Start and stop conditions are generated through software
- [Interrupt function].
- > The end of the transfer is interrupted

[Error detection flag].

> ACK error, overflow error

[Features not supported by Simple I<sup>2</sup>C].

- Slave send, slave receive
- > Multi-master function (arbitration failure detection function)
- Wait for the detection function

### 5.22 Standard Serial Interface SPI

The serial interface SPI has the following two modes:

- Stop-Run mode: This is a mode used when no serial transfer is taking place, which reduces power consumption
- 3-wire serial I/O mode: This mode passes through 3 wires of the serial clock (SCK) and serial data bus (MISO and MOSI). 8-bit or 16-bit data transfer with multiple devices.

#### 5.23 Standard Serial Interface IICA

Serial interface IICA has the following 3 modes:

- Stop-Run mode: This is a mode used when no serial transfer is taking place, which reduces power consumption.
- I<sup>2</sup>C-bus mode (multi-master supported): This mode is performed with multiple devices via 2 wires of the serial clock (SCLA) and the serial data bus (SDAA). Bit data transfer. In accordance with the I<sup>2</sup>C-bus format, the master device can generate a "start condition" for the slave device on the serial data bus Address, Indication of Transmission Direction, Data, and Stop Condition". The slave automatically detects the received status and data through the hardware. This feature simplifies the I<sup>2</sup>C-bus control portion of the application. Because the SCLA and SDAA pins of the serial interface IICA are used as open-drain outputs, the serial clock line and serial data bus require pull-up resistors.
- Wake-up mode: In deep sleep mode, deep sleep mode can be released by generating an interrupt request signal (INTIICA) when receiving the extension code or local station address of the autonomous control device. This is set via the IICA control register.

#### 5.24 Controller CAN

This product can support up to three universal CAN bus interfaces.

## 5.25 LCD BUS Interface

The LCD bus interface has the following functions:

- > Two different bus standards are supported: 8080 mode, 6800 mode
- > Supports 8-bit/16-bit read and write operations
- Controllable transmission speed (up to 10MHz)
- DMA transfers can be triggered when internal data transfer is enabled or external bus access is complete
- Supports DMA read and write



# 5.26 Analog-to-digital Converters (ADC)

This product contains a 12-bit resolution analog-to-digital converter SARADC that converts analog inputs to digital values and supports ADCs up to 21 channels Analog input (ANI0~ANI20). The ADC contains the following features:

- > 12-bit resolution, slew rate 142Msps.
- > Trigger mode: Support software trigger, hardware trigger and hardware trigger in standby
- > Channel selection: Supports two modes: single-channel selection and multi-channel scanning
- > Conversion mode: Supports single conversion and continuous conversion
- > Operating voltage: Supports operating voltage range of  $2.0V \le V_{DD} \le 5.5V$
- Senses the built-in reference voltage (1.45V) and temperature sensor.

|                   | Software triggered        | Start the conversion with software operation.                          |
|-------------------|---------------------------|------------------------------------------------------------------------|
|                   | Hardware triggers no-wait | Start the conversion by detecting a hardware trigger.                  |
| <b>-</b> · ,      | mode                      | , 5 55                                                                 |
| I rigger mode     | The bardware triggers the | In power-off transition standby, power is plugged in by detecting a    |
|                   | wait mode                 | hardware trigger and the transition automatically begins after the A/D |
|                   | Wait mode                 | power stabilization wait time.                                         |
|                   | Select the mode           | Select 1 channel of analog inputs for A/D conversion.                  |
| Channel selection |                           | A/D conversion of analog inputs for 4 channels sequentially. Four      |
| mode              | Scan mode                 | consecutive channels from ANI0 to ANI15 can be selected as analog      |
|                   |                           | inputs.                                                                |
|                   | Single conversion mode    | Performs 1 A/D conversion on the selected channel.                     |
| Conversion mode   | Continuous conversion     | Continuous A/D conversion of the selected channel until stopped by the |
|                   | mode                      | software.                                                              |
| Sample            | Number of comple          | The sample time can be set by registers, with the default number of    |
| time/conversion   | clocks/conversion clocks  | sample clocks being 13.5 clk and the minimum number of conversion      |
| time              | 00003/001100131011 010003 | clocks being 31.5 clk.                                                 |

The ADC can set various A/D conversion modes using the combination of modes described below.

# 5.27 Digital-to-analog Converters (DAC)

This product contains a 2-channel 8-bit resolution analog-to-digital converter DAC that converts digital inputs to analog signals. Has the following characteristics:

- > 8-bit resolution D/A converter
- Supports the outputs of two independent analog channels
- R-2R ladder network
- Built-in real-time output function

# 5.28 Programmable Gain Amplifier (PGA)

Two programmable gain amplifiers (PGA0 and PGA1) are included in this product with the following functions

- There are 7 options for amplification gain per PGA: 4x, 8x, 10x, 12x, 14x, 16x, 32x
- An external pin can be selected as ground for the PGA negative feedback resistor (available as differential mode).
- The output of PGA0 can be selected as an analog input for an A/D converter or as an analog input at the positive end of Comparator 0 (CMP0).
- > The output of PGA1 can be selected as an analog input for A/D converters

## 5.29 Comparators (CMP)

This product has built-in two-channel comparators CMP 0 and CMP1 with the following functions:

- External input and reference multi-channel options for C MP1.
- > An external reference input and an internal reference voltage can be selected for the reference.
- > The cancellation width of the noise cancellation digital filter can be selected.
- > Detects the active edge of the comparator output and generates an interrupt signal.
- > Detects the active edge of the comparator output and outputs the event signal to the linkage controller.

#### 5.30 Two-wire Serial Debug Port (SW-DP).

ARM's SW-DP interface allows connection to a microcontroller via a serial line debugging tool.

## 5.31 Security Features

# 5.31.1 Flash CRC Computing Functions (High-speed CRC, General-purpose CRC).

Detect data errors in flash memory by CRC operation.

The following two CRCs can be used according to different uses and conditions of use.

- High-speed CRC: In the initialization program, it can stop the operation of the CPU and check the entire code flash memory area at high speed.
- Generic CRC: In CPU operation, it is not limited to the flash memory area of the code but can be used for multi-purpose inspection.

#### 5.31.2 RAM Parity Error Detection Function

When reading RAM data, parity errors are detected.

#### 5.31.3 SFR Protection Features

Prevent important SFR (Special Function Register) from being overwritten due to CPU runaways.

#### 5.31.4 Illegal Memory Access Detection Function

Detects illegal access to illegal memory areas (areas without memory or areas with restricted access).

#### 5.31.5 Frequency Detection Function

Self-test CPU or peripheral hardware clock frequency using Timer4 units.

#### 5.31.6 A/D Testing Capabilities

The A/D is converted to the A/D converter's positive (+) reference, negative (-) reference, analog input channel (ANI), temperature sensor output voltage, and internal reference voltage the converter performs self-test.

# 5.31.7 Digital Output Signal Level Detection Function for Input/Output Ports

When the input/ output ports are in output mode, the output level of the pin can be read.

# 5.32 Key Function

A key interrupt (INTKR) can be generated by pressing the key interrupt input pin (KR0 to KR7) to enter the falling edge.



# **6 Electrical Characteristics**

## 6.1 Typical Application of Peripheral Circuits



#### Device connections for typical MCU application peripheral circuits refer to the following:

- Note 1: D2 should be connected only when it is used as a host node, and a 660Ω/6.8nF RL/CL combination is recommended when the RL is used as a host node to obtain a slower slope of the bus waveform;
- Note 2: The LIN transceiver 1028 has an internal LDO that can provide a 5V power supply for the system through the VCC pin.
- Note 3: Vsup is the 5V power supply output from the 1028, while VDD is the system power supply.



# 6.2 Absolute Maximum Voltage Rating

(T<sub>A</sub>= -40~125°C)

| Item                  | Symbol           | Condition                              | Rating                                                                    | Unit |
|-----------------------|------------------|----------------------------------------|---------------------------------------------------------------------------|------|
| Supply voltage        | V <sub>DD</sub>  | -                                      | -0.5~6.5                                                                  | V    |
| Supply vollage        | EV <sub>DD</sub> | -                                      | -0.5~6.5                                                                  | V    |
|                       |                  | P00~P06, P10~P17, P30, P31             |                                                                           |      |
|                       |                  | P40~P47, P50~P57, P64~P67              |                                                                           |      |
|                       | V <sub>I1</sub>  | P70~P77, P80~P87                       | -0.3~EV_{DD}+0.3 and -0.3~V_{DD}+0.3 $^{\text{Note 1}}$                   | V    |
|                       |                  | P100~P102, P110~P111, P120             |                                                                           |      |
| Input voltage         |                  | P130, P136, P140~P147                  |                                                                           |      |
|                       | V <sub>I2</sub>  | P60~P63(N-channel drain open) -0.3~6.5 |                                                                           | V    |
|                       |                  | P20~P27, P121~P124,                    |                                                                           |      |
|                       | VI3              | P137,P150~P156                         | -0.3~V <sub>DD</sub> +0.3 <sup>Note1</sup>                                | V    |
|                       |                  | EXCLK, EXCLKS, RESETB                  |                                                                           |      |
|                       |                  | P00~P06, P10~P17, P30, P31             |                                                                           |      |
|                       |                  | P40~P47, P50~P57, P60~P67              |                                                                           |      |
| Output voltage        | V <sub>01</sub>  | P70~P77, P80~P87                       | -0.3~EV_DD+0.3 and -0.3~V_DD+0.3 $^{\text{Note1}}$                        | V    |
| Output voltage        |                  | P100~P102, P110~P111, P120             |                                                                           |      |
|                       |                  | P130, P136, P140~P147                  |                                                                           |      |
|                       | V <sub>O2</sub>  | P20~P27, P137,P150~P156                | -0.3~V <sub>DD</sub> +0.3 <sup>Note1</sup>                                | V    |
|                       | V <sub>Al1</sub> | ANI8~ANI20                             | -0.3~EV <sub>DD</sub> +0.3 and -0.3~AV <sub>REF</sub> (+) +0.3            | V    |
| Analog input voltage  |                  |                                        | NOTE 1, 2                                                                 |      |
| , maiog input voltage | V <sub>AI2</sub> | ANI0~ANI7                              | -0.3~V <sub>DD</sub> +0.3 and -0.3~AV <sub>REF</sub> (+) +0.3<br>Note1, 2 | V    |

Note1: Not more than 6.5V.

Note2: The pins of the A/D conversion object cannot exceed  $AV_{REF}(+)+0.3$ .

Note: Even if 1 item in each project exceeds the absolute maximum rating instantaneously, the quality of the product may be reduced. The absolute maximum rating is the rating that may cause physical damage to the product and must be used in a state that does not exceed the rated value.

Remark:

- 1. Unless specifically specified, the characteristics of the multiplexed pin are the same as those of the port pin.
- 2. AV<sub>REF</sub>(+): The positive (+) reference voltage of an A/D converter.
- 3. Use V<sub>SS</sub> as the reference voltage.
- 4. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.



# 6.3 Absolute Maximum Current Rating

| (   | T <sub>A</sub> = -40~125°C | ) |
|-----|----------------------------|---|
| · · |                            | / |

| Item                   | Symbol           |                        | Rating                                     | Unit    |    |
|------------------------|------------------|------------------------|--------------------------------------------|---------|----|
|                        |                  |                        | P00~P06, P10~P17, P30, P31, P40~P47,       |         |    |
|                        |                  | Fach nin               | P50~P57, P64~P67, P70~P77, P80~P87,        | 40      |    |
|                        |                  | Each pin               | P100~P102, P110~P111, P120, P130,          | -40     | mA |
|                        |                  |                        | P136, P137, P140~P147                      |         |    |
|                        | Іон1             |                        | P00~P04, P40~P45, P120, P130, P136         | 70      |    |
| High output current    |                  | Total size             | P137, P140~P144                            | -70     | mA |
|                        |                  | 1 otal pins -          | P05, P06, P10~P17, P30, P31                |         |    |
|                        |                  | 170mA                  | P50~P55, P64~P67, P70~P77, P100            | -100    | mA |
|                        |                  |                        | P110~P111, P146, P147                      |         |    |
|                        |                  | Each pin               |                                            | -3      | mA |
|                        | IOH2             | Total pins             | P20~P27, P150~P156                         | -15     | mA |
|                        |                  |                        | P00~P06, P10~P17, P30, P31, P40~P47,       |         |    |
|                        | I <sub>OL1</sub> | Each pin               | P50~P57, P60~P67, P70~P77, P80~P87,        | 40      |    |
|                        |                  |                        | P100~P102, P110~P111, P120, P130,          | 40      | mA |
|                        |                  |                        | P136, P137, P140~P147                      |         |    |
|                        |                  | The total pins         | P00~P04, P40~P45, P120, P130, P136         | 100     |    |
| Low output current     |                  |                        | P137, P140~P144                            | 100     | mA |
|                        |                  |                        | P05, P06, P10~P17, P30, P31                |         |    |
|                        |                  | ale monta              | P50~P55, P60~P67, P70~P77, P100            | 120     | mA |
|                        |                  |                        | P110~P111, P146, P147                      |         |    |
|                        | la               | Each pin               | D20 D27 D460 D466                          | 15      | mA |
|                        | IOL2             | Total pins             | F20~F27, F150~F150                         | 45      | mA |
| Input pagative ourrant | la con           | Each pin               | Continuous DC negative current that can be | -3      | mA |
| input negative current | IINJL            | Pin total              | injected into an input pin                 | -15     | mA |
| Input positivo ourrept |                  | Each pin               | Continuous DC positive current that can be | 3       | mA |
| input positive current | INJH             | Pin total              | injected into an input pin                 | 15      | mA |
| Operating ambient      | -                | Usually run            |                                            | 40, 405 | °O |
| temperature            | IA               | When flash programming |                                            | -40~125 | C  |
| Storage temperature    | T <sub>stg</sub> |                        | -                                          | -65~150 | °C |

Note: Even if 1 item in each project exceeds the absolute maximum rating instantaneously, the quality of the product may be reduced. The absolute maximum rating is the rating that may cause physical damage to the product and must be used in a state that does not exceed the rated value.

Remark:

- 1. Unless specifically specified, the characteristics of the multiplexed pin are the same as those of the port pin.
- 2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.



#### **Oscillation Circuit Characteristics** 64

### 6.4.1 X 1, XT1 Features

| Item                                | Resonators                | Condition         | Min | Тур    | Max | Unit   |
|-------------------------------------|---------------------------|-------------------|-----|--------|-----|--------|
| X1 clock oscillation frequency      | Ceramic resonator/crystal |                   | 1.0 |        | 20. |        |
| (Fx).                               | resonator                 | -                 | 1.0 |        | 0   | MHZ    |
| X1 clock oscillation settling time  | Ceramic resonator/crystal | 20MHz C-10pE      |     | 15     | -   | ms     |
| AT Clock oscillation setting time   | resonator                 | 2010112, 0-1001   | -   |        |     |        |
| X1 clock oscillation feedback       | Ceramic resonator/crystal | -                 |     | _      | 1.8 | MO     |
| resistor                            | resonator                 |                   | 0.0 |        | 1.0 | 10122  |
| XT1 clock oscillation frequency     | Crystal reconstors        | -                 | 32  | 32 768 | 35  | KH2    |
| (F <sub>XT</sub> ).                 | Crystal resonators        |                   | 52  | 52.700 | 55  | TXI 12 |
| XT1 clock oscillation settling time | Crystal resonators        | 32.768KHz, C=20pF | -   | 2      | -   | s      |

(T<sub>A</sub>= -40~125°C, 2.0V≤V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=0V)

Remark:

- 1. It only indicates the frequency tolerance range of the oscillation circuit, and refer to the AC characteristics for the execution time of the instruction.
- 2. Please commission a resonator manufacturer to evaluate the installation circuit and use it after confirming the oscillation characteristics.
- 3. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

#### 6.4.2 Internal Oscillator Features

| (1 <sub>A</sub> = -40~125 C, 2.0V ≥ V <sub>DD</sub> ≥ 5.5V, V <sub>SS</sub> =0                 | V)                         |      |     |      |      |
|------------------------------------------------------------------------------------------------|----------------------------|------|-----|------|------|
| Resonators                                                                                     | Condition                  | Min  | Тур | Max  | Unit |
| Clock Frequency (F <sub>IH</sub> ) of the High-Speed<br>Internal Oscillator <sup>Note1,2</sup> | -                          | 1.0  | -   | 64.0 | MHz  |
| High-speed internal oscillator settling time (T <sub>SU</sub> )                                | -                          | -    | 12  | -    | us   |
|                                                                                                | T <sub>A</sub> =10~70°C    | -1.0 | -   | +1.0 | %    |
| Clock frequency accuracy of a high-speed                                                       | T <sub>A</sub> = 0~105°C   | -1.5 | -   | +1.5 | %    |
| internal oscillator                                                                            | T <sub>A</sub> = -10~125°C | -2.0 | -   | +2.0 | %    |
|                                                                                                | T <sub>A</sub> = -40~125°C | -4.0 | -   | +4.0 | %    |
| The clock frequency (F <sub>IL</sub> ) of the low-speed internal oscillator                    | -                          | 12   | 15  | 18   | KHz  |

 $40, 425^{\circ} 0, 20 V < V < EEV V 0 V V$ 

Note 1: Select the frequency of the high-speed internal oscillator via the option byte.

Note 2: Only the characteristics of the oscillation circuit are indicated, please refer to the AC characteristics for the execution time of the instruction.

Remark: The low temperature specification value is guaranteed by the design, and low temperature conditions may occur in mass production.



# 6.4.3 PLL Oscillator Characteristics

| Resonators                | Condition | Min | Тур | Max | Unit |
|---------------------------|-----------|-----|-----|-----|------|
| PLL input frequency Note1 | -         | 4.0 | -   | 8.0 | MHz  |
| PLL lock time             | -         | 40  | -   | -   | us   |

Note 1: Only the characteristics of the oscillation circuit are indicated, please refer to the AC characteristics for the command execution time.

Remark: The low temperature specification value is guaranteed by the design, and low temperature conditions may occur in mass production.



#### 6.5 DC Characteristics

#### 6.5.1 Pin Characteristics

| Item                               | Symbol           | Condition                                                                                                                                                                                          |                                         | Min | Тур | Max         | Unit |
|------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----|-----|-------------|------|
|                                    |                  | P00~P06, P10~P17, P30, P31<br>P40~P47, P50~P57, P64~P67                                                                                                                                            | 2.0V≤EV <sub>DD</sub> ≤5.5V<br>-40~85°C | -   | -   | -12.0 Note2 |      |
|                                    |                  | P70~P77, P80~P87, P100~P102<br>P110~P111, P120, P130, P136<br>P137, P140~P147<br>1 pin alone                                                                                                       | 2.0V≪EV <sub>DD</sub> ≪5.5V<br>85~125°C | -   | -   | 6.0 Note2   | mA   |
|                                    |                  | P00~P04, P40~P45, P120, P130                                                                                                                                                                       | 4.0V≤EV <sub>DD</sub> ≤5.5V<br>-40~85°C | -   | -   | -60.0       |      |
|                                    |                  | P136, P137, P140~P144<br>Total pins                                                                                                                                                                | 4.0V≪EV <sub>DD</sub> ≪5.5V<br>85~125°C | -   | -   | -30.0       | mΑ   |
|                                    |                  | (at duty cycle≤70% <sup>Note3</sup> )                                                                                                                                                              | 2.4V≤EV <sub>DD</sub> <4.0V             | -   | -   | -12.0       | mA   |
|                                    | Юнт              |                                                                                                                                                                                                    | 2.0V≤EV <sub>DD</sub> <2.4V             | -   | -   | -6.0        | mA   |
| High lovel                         |                  | P05, P06, P10~P17, P30, P31<br>P50~P55, P64~P67, P70~P77<br>P100, P110~P111, P146, P147<br>pin total (at duty cycle≤70% <sup>Note3</sup> ).<br>Total pins<br>(at duty cycle≤70% <sup>Note3</sup> ) | 4.0V≪EV <sub>DD</sub> ≪5.5V<br>-40~85°C | -   | -   | -80.0       |      |
| output<br>Current <sup>Note1</sup> |                  |                                                                                                                                                                                                    | 4.0V≪EV <sub>DD</sub> ≪5.5V<br>85~125°C | -   | -   | -30.0       | ΜA   |
|                                    |                  |                                                                                                                                                                                                    | 2.4V≤EV <sub>DD</sub> <4.0V             | -   | -   | -20.0       | mA   |
|                                    |                  |                                                                                                                                                                                                    | 2.0V≤EV <sub>DD</sub> <2.4V             | -   | -   | -10.0       | mA   |
|                                    |                  |                                                                                                                                                                                                    | 4.0V≤EV <sub>DD</sub> ≤5.5V<br>-40~85°C | -   | -   | -140.0      |      |
|                                    |                  |                                                                                                                                                                                                    | 4.0V≪EV <sub>DD</sub> ≪5.5V<br>85~125°C | -   | -   | -60.0       | mA   |
|                                    |                  |                                                                                                                                                                                                    | 2.4V≤EV <sub>DD</sub> <4.0V             |     |     | -30.0       |      |
|                                    |                  |                                                                                                                                                                                                    | 2.0V≤EV <sub>DD</sub> <2.4V             |     |     | -15.0       |      |
|                                    | le:::            | P20 to P27, P150~P156<br>1 pin alone                                                                                                                                                               | 2.0V≤V <sub>DD</sub> ≤5.5V              | -   | -   | -2.5 Note2  | mA   |
|                                    | I <sub>OH2</sub> | Total pins<br>(at duty cycle≪70% <sup>Note3</sup> )                                                                                                                                                | 2.0V≪V <sub>DD</sub> ≪5.5V              | -   | -   | -10         | mA   |

(T<sub>A</sub>= -40~125°C, 2.0V≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=EV<sub>SS</sub>=0V)

Note1: This is the current value at which the device is guaranteed to operate even if current flows from the  $EV_{DD}$  and  $V_{DD}$  pins to the output pins.

Note2: The total current value cannot be exceeded.

Note3: This is the output current value for the "duty cycle  $\leq$ 70% condition". The output current value of 70% of the duty cycle > can be calculated using the following calculation (if the duty cycle is changed to n%).

Total output current of pins =  $(I_{OH} \times 0.7)/(n \times 0.01)$ .

<calculation example> I<sub>OH</sub> = -10.0mA, n =80%



Total output current of pins =  $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

The current at each pin does not vary due to duty cycle and does not flow above the absolute maximum rating.

Note: In N-channel open-drain mode, pins set to active N-channel open-drain do not output high. Remark:

- 1. Unless specifically specified, the characteristics of the multiplexed pin are the same as those of the port pin.
- 2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.



|        |                  |                                                                                                         | ,                                                        |                                         |     |          |      |    |
|--------|------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|-----|----------|------|----|
| Item   | Symbol           | Condition                                                                                               |                                                          | Min                                     | Тур | Max      | Unit |    |
|        |                  | P00~P06, P10~P17, P30, P31<br>P40~P47, P50~P57, P60~P67<br>P70~P77, P80~P87, P100~P102                  | 2.0V≤EV <sub>DD</sub> ≤5.5V<br>-40~85°C                  | -                                       | -   | 30 Note2 | mA   |    |
|        |                  | P110~P111, P120, P130, P136<br>P137, P140~P147<br>1 pin alone                                           | 2.0V≪EV <sub>DD</sub> ≪5.5V<br>85~125°C                  | -                                       | -   | 15 Note2 |      |    |
|        |                  |                                                                                                         | 4.0V≤EV <sub>DD</sub> ≤5.5V<br>-40~85°C                  | -                                       | -   | 100      | mA   |    |
|        |                  | P00~P04, P40~P45, P120, P130<br>P136, P137, P140~P144                                                   | 4.0V≤EV <sub>DD</sub> ≤5.5V<br>85~125°C                  | -                                       | -   | 50       | IIIA |    |
|        | Iol1             | Total pins (at duty cycle ≈ 70% <sup>notes</sup> )                                                      | 2.4V≤EV <sub>DD</sub> <4.0V                              | -                                       | -   | 30       | mA   |    |
|        |                  |                                                                                                         | 2.0V ≤ EV <sub>DD</sub> < 2.4V                           | -                                       | -   | 15       | mA   |    |
| output |                  | Switzver      IOL1        output      P05, P06,        Current      P50~P55,        Note1      P110~P11 | P05, P06, P10~P17, P30, P31                              | 4.0V≤EV <sub>DD</sub> ≤5.5V<br>-40~85°C | -   | -        | 120  |    |
| Note1  |                  |                                                                                                         | P50~P55, P60~P67, P70~P77, P100<br>P110~P111, P146, P147 | 4.0V≤EV <sub>DD</sub> ≤5.5V<br>85~125°C | -   | -        | 60   | mA |
|        |                  | Total pins (at duty cycle≤70% <sup>Note3</sup> ).                                                       | 2.4V≤EV <sub>DD</sub> <4.0V                              | -                                       | -   | 40       | mA   |    |
|        |                  |                                                                                                         | 2.0V≤EV <sub>DD</sub> <2.4V                              | -                                       | -   | 20       | mA   |    |
|        |                  |                                                                                                         | 2.0V≤EV <sub>DD</sub> ≤5.5V<br>-40~85°C                  | -                                       | -   | 150      |      |    |
|        |                  | Total pins (at duty cycle≤70% <sup>Note3</sup> )                                                        | 2.0V≤EV <sub>DD</sub> ≤5.5V<br>85~125°C                  | -                                       | -   | 80       | mA   |    |
|        |                  |                                                                                                         | 2.4V≤EV <sub>DD</sub> ≤4.0V                              | -                                       | -   | 50       |      |    |
|        |                  |                                                                                                         | 2.0V≤EV <sub>DD</sub> ≤2.4V                              | -                                       | -   | 30       |      |    |
|        | loi 2            | P20 to P27, P150~P156 1 pin alone                                                                       | 2.0V≤V <sub>DD</sub> ≤5.5V                               | -                                       | -   | 6 Note2  | mA   |    |
|        | I <sub>OL2</sub> | Total pins (at duty cycle≤70% <sup>Note3</sup> )                                                        | 2.0V≤V <sub>DD</sub> ≤5.5V                               | -                                       | -   | 20       | mA   |    |

(T<sub>A</sub>= -40~125°C, 2.0V≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=EV<sub>SS</sub>=0V)

Note 1: This is the current value at which the device is guaranteed to operate even if current flows from the output pin to the EVss and Vss pins.

- Note 2: The total current value cannot be exceeded.
- Note 3: This is the output current value for the "duty cycle  $\leq$ 70% condition". The output current value of 70% is changed to a duty cycle > can be calculated using the following calculation (if the duty cycle is changed to n%).

Total output current of pins =  $(I_{OL} \times 0.7)/(n \times 0.01)$ .

<calculation example  $> I_{OL}$ = 10.0mA, n = 80%

Total output current of the pins =  $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

The current at each pin does not vary due to duty cycle and does not flow above the absolute maximum rating.

Remark:

1. Unless specifically specified, the characteristics of the multiplexed pin are the same as those



of the port pin.

2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.



| Item                             | Symbol                              | Condition                                                                                                                       | 1                                        | Min                 | Тур | Max                 | Unit |
|----------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------|-----|---------------------|------|
| Power<br>supply input<br>voltage | V <sub>DD</sub><br>EV <sub>DD</sub> | -                                                                                                                               |                                          | 2.0                 | -   | 5.5                 | V    |
| The supply ground input voltage  | Vss<br>EVss                         | -                                                                                                                               |                                          | -0.3                | -   | -                   | V    |
| High input<br>voltage            | VIH1                                | P00~P06, P10~P17, P30<br>P31, P40~P47, P50~P57<br>P64~P67, P70~P77<br>P80~P87, P100~P102<br>P110~P111, P120, P136<br>P140~7P147 | Schmidt input                            | 0.8EV <sub>DD</sub> | -   | EV <sub>DD</sub>    | V    |
|                                  | VIH2                                | P01, P03, P04, P10<br>P14~P17, P30, P43~P44<br>P50, P55, P142~P143                                                              | TTL input<br>4.0V≪EV <sub>DD</sub> ≪5.5V | 2.2                 | -   | EV <sub>DD</sub>    | V    |
|                                  |                                     |                                                                                                                                 | TTL input<br>3.3V≪EV <sub>DD</sub> ≪4.0V | 2.0                 | -   | EV <sub>DD</sub>    | V    |
|                                  |                                     |                                                                                                                                 | TTL input<br>2.0V≤EV <sub>DD</sub> <3.3V | 1.5                 | -   | EV <sub>DD</sub>    | V    |
|                                  | V <sub>IH3</sub>                    | P20~P27, P137, P150~P156                                                                                                        | $0.7V_{DD}$                              | -                   | Vdd | V                   |      |
|                                  | V <sub>IH4</sub>                    | P60~P63                                                                                                                         | $0.7 EV_{DD}$                            | -                   | 6.0 | V                   |      |
|                                  | VIH5                                | P121~P124, EXCLK, EXCLKS                                                                                                        | 0.8V <sub>DD</sub>                       | -                   | Vdd | V                   |      |
|                                  | VIL1                                | P00~P06, P10~P17, P30<br>P31, P40~P47, P50~P57<br>P64~P67, P70~P77<br>P80~P87, P100~P102<br>P110~P111, P120, P136<br>P140~P147  | Schmidt input                            | 0                   | -   | 0.2EV <sub>DD</sub> | V    |
| Low input                        |                                     |                                                                                                                                 | TTL input<br>4.0V≪EV <sub>DD</sub> ≪5.5V | 0                   | -   | 0.8                 | V    |
| voitage                          | V <sub>IL2</sub>                    | P14~P17, P30, P43~P44                                                                                                           | TTL input<br>3.3V≤EV <sub>DD</sub> <4.0V | 0                   | -   | 0.5                 | V    |
|                                  |                                     | 1 JU, FJJ, F142~F143                                                                                                            | TTL input<br>2.0V≤EV <sub>DD</sub> <3.3V | 0                   | -   | 0.32                | V    |
|                                  | VIL3                                | P20~P27, P137, P150~P156                                                                                                        |                                          | 0                   | -   | $0.3V_{\text{DD}}$  | V    |
|                                  | VIL4                                | P60~P63                                                                                                                         |                                          | 0                   | -   | 0.3EV <sub>DD</sub> | V    |
|                                  | VIL5                                | P121~P124, EXCLK, EXCLKS                                                                                                        | , RESETB                                 | 0                   | -   | 0.2V <sub>DD</sub>  | V    |

#### (T<sub>A</sub>= -40~125°C, 2.0V≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=E<sub>VSS</sub>=0V)

Note: Even in N-channel open-drain mode, the V<sub>IH</sub> maximum value of the pin set to active N-channel open-drain is EV<sub>DD</sub>.

Remark:

- 1. Unless specifically specified, the characteristics of the multiplexed pin are the same as those of the port pin.
- 2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.



| Item           | Symbol           | Condition                                   |                                                            | Min                   | Тур | Max  | Unit |
|----------------|------------------|---------------------------------------------|------------------------------------------------------------|-----------------------|-----|------|------|
|                |                  | P00~P06, P10~P17, P30                       | 4.0V≤EV <sub>DD</sub> ≤5.5V,<br>I <sub>OH1</sub> = -12.0mA | EV <sub>DD</sub> -1.5 | -   | -    | V    |
|                |                  | P31, P40~P47, P50~P57<br>P64~P67, P70~P77   | 4.0V≤EV <sub>DD</sub> ≤5.5V,<br>I <sub>OH1</sub> = -6.0mA  | EV <sub>DD</sub> -0.7 | -   | -    | V    |
|                | V <sub>OH1</sub> | P80~P87, P100~P102<br>P110~P111, P120, P130 | 2.4V≤EV <sub>DD</sub> ≤5.5V,<br>I <sub>OH1</sub> = -3.0mА  | EV <sub>DD</sub> -0.6 | -   | -    | V    |
| High level     |                  | P136, P137, P140~P147                       | 2.0V≤EV <sub>DD</sub> ≤5.5V,<br>I <sub>OH1</sub> = -2mA    | EV <sub>DD</sub> -0.5 | -   | -    | V    |
| Output voltage |                  |                                             | 4.0V≪V <sub>DD</sub> ≪5.5V,<br>I <sub>OH2</sub> = -2.5mA   | EV <sub>DD</sub> -1.5 | -   | -    | V    |
|                | N                | P20~P27<br>P150~P156                        | 4.0V≤V <sub>DD</sub> ≤5.5V,<br>I <sub>OH2</sub> = -1.5mA   | EV <sub>DD</sub> -0.7 | -   | -    | V    |
|                | Voh2             |                                             | 2.4V≪V <sub>DD</sub> ≪5.5V,<br>I <sub>OH2</sub> = -0.5mA   | EV <sub>DD</sub> -0.6 | -   | -    | V    |
|                |                  |                                             | 2.0V≪V <sub>DD</sub> ≪5.5V,<br>I <sub>OH2</sub> = -0.4mA   | V <sub>DD</sub> -0.5  | -   | -    | V    |
|                | Vol1             | P00~P06, P10~P17, P30                       | 4.0V≤EV <sub>DD</sub> ≤5.5V,<br>I <sub>OL1</sub> =30.0mA   | -                     | -   | 1. 2 | V    |
|                |                  | P31, P40~P47, P50~P57<br>P60~P67, P70~P77   | 4.0V≤EV <sub>DD</sub> ≤5.5V,<br>I <sub>OL1</sub> =15.0mA   | -                     | -   | 0.7  | V    |
|                |                  | P80~P87, P100~P102<br>P110~P111, P120, P130 | 2.4V≤EV <sub>DD</sub> ≤5.5V,<br>I <sub>OL1</sub> =6.0mA    | -                     | -   | 0.4  | V    |
| Low level      |                  | P136, P137, P140~P147                       | 2.0V≤EV <sub>DD</sub> ≤5.5V,<br>I <sub>OL1</sub> =4.0mA    | -                     | -   | 0.4  | V    |
| Output voltage |                  |                                             | 4.0V≤V <sub>DD</sub> ≤5.5V,<br>I <sub>OL2</sub> =6.0mA     | -                     | -   | 1. 2 | V    |
|                |                  | P20~P27                                     | 4.0V≤V <sub>DD</sub> ≤5.5V,<br>I <sub>OL2</sub> =4.0mA     | -                     | -   | 0.7  | V    |
|                | Vol2             | P150~P156                                   | 2.4V≤V <sub>DD</sub> ≤5.5V,<br>I <sub>OL2</sub> =1.5mA     | -                     | -   | 0.4  | V    |
|                |                  |                                             | 2.0V≤V <sub>DD</sub> ≤5.5V,<br>I <sub>OL2</sub> =1.0mA     | -                     | -   | 0.4  | V    |

#### (T<sub>A</sub>= -40~125°C, 2.0V≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=EV<sub>SS</sub>=0V)

Note: In N-channel open-drain mode, pins set to active N-channel open-drain do not output high. Remark:

- 1. Unless specifically specified, the characteristics of the multiplexed pin are the same as those of the port pin.
- 2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.



| Item                         | Symbol            | Conditi                                                                                                                              | on                                                                                      | Min | Тур | Max | Unit |
|------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----|-----|-----|------|
| High input                   | ILIH1             | P00~P06, P10~P17, P30<br>P31, P40~P47, P50~P57<br>P60~P67, P70~P77<br>P80~P87, P100~P102<br>P110~P111, P120, P130<br>P136, P140~P147 | VI=EVDD                                                                                 | -   | -   | 1   | uA   |
| leakage<br>current           | I <sub>LIH2</sub> | P20~P27, P137,P150~P156<br>RESETB                                                                                                    | VI=VDD                                                                                  | -   | -   | 1   | uA   |
|                              | Ілнз              | P121~P124 (X1, X2, EXCLK                                                                                                             | V <sub>I</sub> =V <sub>DD</sub> , when the input<br>port and external clock<br>are in   | -   | -   | 1   | uA   |
|                              |                   | X11, X12, EXCLAS)                                                                                                                    | VI=VDD, when a resonator is connected                                                   | -   | -   | 10  | uA   |
| Low input                    | ILIL1             | P00~P06, P10~P17, P30<br>P31, P40~P47, P50~P57<br>P60~P67, P70~P77<br>P80~P87, P100~P102<br>P110~P111, P120, P130<br>P136, P140~P147 | VI=EVSS                                                                                 | -   | -   | -1  | uA   |
| leakage<br>current           | I <sub>LIL2</sub> | P20~P27, P137,P150~P156<br>RESETB                                                                                                    | VI=VSS                                                                                  | -   | -   | -1  | uA   |
|                              | Ilil3             | P121~P124 (X1, X2, EXCLK                                                                                                             | V <sub>I</sub> =V <sub>SS</sub> , when entering<br>the port and external<br>clock input | -   | -   | -1  | uA   |
|                              |                   | X11, X12, EXOLICO)                                                                                                                   | V <sub>I</sub> =V <sub>SS</sub> , when a resonator is connected                         | -   | -   | -10 | uA   |
| Internal pull-up<br>resistor | Ru                | P00~P06, P10~P17, P30<br>P31, P40~P45, P50~P57<br>P64~P67, P70~P77<br>P80~P87, P100~P102<br>P110~P111, P120, P136<br>P137, P140~P147 | VI=EVss, when entering the port                                                         | 10  | 30  | 100 | ΚΩ   |

#### (T<sub>A</sub>= -40~125°C, 2.0V≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=EV<sub>SS</sub>=0V)

Remark:

- 1. Unless specifically specified, the characteristics of the multiplexed pin are the same as those of the port pin.
- 2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.



# 6.5.2 Supply Current Characteristics

| Item           | Symbol    |               |                                                    |                                               | Min                  | Тур | Max | Unit |    |
|----------------|-----------|---------------|----------------------------------------------------|-----------------------------------------------|----------------------|-----|-----|------|----|
|                |           |               | High-speed                                         | F <sub>HOCO</sub> =64MHz, F <sub>IH</sub> =64 | MHz Note3            | -   | 7.5 | 18   |    |
|                |           |               | internal                                           | F <sub>HOCO</sub> =48MHz, F <sub>IH</sub> =48 | MHz Note3            | -   | 7.5 | 16   | mA |
|                |           |               | oscillator                                         | FHOCO=32MHz, FIH=32                           | MHz Note3            | -   | 9   | 14   |    |
|                |           | Run           |                                                    |                                               | Enter the            |     |     | 10   |    |
|                |           |               | High-speed                                         |                                               | square wave          | -   | 6   | 12   |    |
|                |           |               | master system                                      | F <sub>MX</sub> =20MHz <sup>Note2</sup>       | Connect the          |     |     |      | mA |
|                | IDD1      | mode          | clock                                              |                                               | crystal              | -   | 6   | 12   |    |
|                |           |               |                                                    |                                               | oscillator           |     |     |      |    |
|                |           |               |                                                    |                                               | Enter the            | _   | 80  | 200  |    |
|                |           |               | The secondary                                      |                                               | square wave          |     | 00  | 200  |    |
|                |           |               | system clock                                       | F <sub>SUB</sub> =32.768KHz <sup>Note4</sup>  | Connect the          |     |     |      | uA |
|                |           |               | runs                                               |                                               | crystal              | -   | 80  | 200  |    |
|                |           |               |                                                    |                                               | oscillator           |     |     |      |    |
| Supply current |           |               | High speed                                         | Fносо=64MHz, Fiн=64                           | MHz Note3            | -   | 2.4 | 12   |    |
|                |           |               | internal oscillator                                | Fносо=48MHz, Fiн=48                           | MHz Note3            | -   | 1.8 | 10   | mA |
| Noter          |           |               |                                                    | FHOCO=32MHz, FIH=32                           | MHz <sup>Note3</sup> | -   | 1.2 | 8    |    |
|                |           |               |                                                    |                                               | Enter the            |     | 1   | 4    |    |
|                |           |               | High-speed                                         |                                               | square wave          | -   | -   | 4    |    |
|                | 2002      | sleep         | master system                                      | F <sub>MX</sub> =20MHz <sup>Note2</sup>       | Connect the          |     |     |      | mA |
|                | IDD2      | mode          | clock                                              |                                               | crystal              | -   | 1   | 4    |    |
|                |           |               |                                                    |                                               | oscillator           |     |     |      |    |
|                |           |               |                                                    |                                               | Enter the            | _   | 1.8 | 100  |    |
|                |           |               | The secondary                                      |                                               | square wave          |     |     |      |    |
|                |           |               | system clock                                       | F <sub>SUB</sub> =32.768KHz <sup>Note5</sup>  | Connect the          |     |     |      | uA |
|                |           |               | runs                                               |                                               | crystal              | -   | 1.8 | 100  |    |
|                |           |               |                                                    |                                               | oscillator           |     |     |      |    |
|                |           | Deep          | T <sub>A</sub> = -40°C~25°C                        | V <sub>DD</sub> =3.0V                         |                      | -   | 1.5 | 2.4  |    |
|                | DD3 Note6 | sleep         | T <sub>A</sub> = -40°C~85°C                        | V <sub>DD</sub> =3.0V                         |                      | -   | 1.5 | 25   | uA |
|                |           | mode<br>Note7 | T <sub>A</sub> = -40°C~105°C V <sub>DD</sub> =3.0V |                                               |                      | -   | 1.5 | 35   |    |
|                |           |               | T <sub>A</sub> = -40°C~125°C V <sub>DD</sub> =3.0V |                                               |                      | -   | 1.5 | 80   |    |

(T<sub>A</sub>= -40~125°C, 2.0V≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=EV<sub>SS</sub>=0V)

Note1: This is the total current flowing through V<sub>DD</sub> and EV<sub>DD</sub>, including the input pins fixed as V<sub>DD</sub>, EV<sub>DD</sub> or the input leakage current of the V<sub>SS</sub>, EV<sub>SS</sub> status. Typical: The CPU is in the multiplication instruction execution (I<sub>DD1</sub>) and does not contain peripheral operating currents. Maximum: The CPU is in the multiplication instruction execution (I<sub>DD1</sub>) and contains peripheral operating current, but does not include the flow to the A/D converter the current in the LVD circuit, I/O ports, and internal pull-up or pull-down resistors does not include the current at which the data flash is rewritten.

Note2: This is a case where the high-speed internal oscillator and subsystem clock stop oscillating.

- Note3: This is a case where the high-speed master system clock and the sub-system clock stop oscillating.
- Note4: This is a case where the high-speed internal oscillator and the high-speed master system clock stop oscillating.
- Note5: This is a case where the high-speed internal oscillator and the high-speed master system clock stop oscillating. Contains current flowing to the RTC, but does not include current flowing to the 15-bit interval timer and watchdog timer.
- Note6: Does not include current flowing to the RTC, 15-bit interval timer, and watchdog timer.
- Note7: For the value of the current when the secondary system clock is running in deep sleep mode, refer to the current value when the secondary system clock is running in sleep mode.

Remark:

- 1. FHOCO: The clock frequency of the high-speed internal oscillator, FIH: The system clock frequency provided by the high-speed internal oscillator.
- 2. F<sub>SUB:</sub> External subsystem clock frequency (XT1/XT2 clock oscillation frequency).
- 3. F<sub>MX</sub>: External master system clock frequency (X1/X2 clock oscillation frequency).
- 4. The Typical temperature condition is  $T_A = 25^{\circ}C$ .
- 5. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.



|                                                    | ,                         |                   | /                                                |     |      |     |      |
|----------------------------------------------------|---------------------------|-------------------|--------------------------------------------------|-----|------|-----|------|
| Parameter                                          | Symbol                    | C                 | ondition                                         | Min | Тур  | Max | Unit |
| Low-speed internal oscillator<br>operating current | IFIL Note1                |                   | -                                                | -   | 0.2  | -   | uA   |
| RTC operating current                              | IRTC Note1,2,3            |                   | -                                                | -   | 0.04 | -   | uA   |
| 15-bit interval timer operating current            | I <sub>IT</sub> Note1,2,4 | -                 |                                                  | -   | 0.02 | -   | uA   |
| Watchdog timer operating current                   | WDT Note1,2,5             | Fı∟=15KHz         |                                                  | -   | 0.22 | -   | uA   |
|                                                    |                           | ADC HS mode       | e @64MHz                                         | -   | 2.2  | -   | mA   |
| The A/D converter operates                         | IADC <sup>Note1,6</sup>   | ADC HS mode @4MHz |                                                  | -   | 1.3  | -   | mA   |
| current                                            |                           | ADC LC mode       | e@24MHz                                          | -   | 1.1  | -   | mA   |
|                                                    |                           | ADC LC mode       | e@4MHz                                           | -   | 0.8  | -   | mA   |
| The D/A converter operates<br>current              | IDAC Note1.8              | Per channel       |                                                  | -   | 1.4  | -   | mA   |
| PGA operating current                              |                           | Per channel       |                                                  | -   | 480  | 700 | uA   |
| Comparator operating current                       | ICMP Note1, 9             | Per channel       | The internal<br>reference voltage<br>is not used | -   | 60   | 100 | uA   |
|                                                    |                           |                   | An internal<br>reference voltage<br>is used      | -   | 80   | 140 | uA   |
| LVD operating current                              | LVD Note1,7               | -                 |                                                  | -   | 0.08 | -   | uA   |

(T<sub>A</sub>= -40~125°C, 2.0V≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=EV<sub>SS</sub>=0V)

Note1: This is the current flowing through  $V_{\text{DD}}.$ 

- Note2: This is a case where the high-speed internal oscillator and the high-speed system clock stop oscillating.
- Note3: This is the current that only flows to the real-time clock (RTC) (excluding the operating current of the low-speed internal oscillator and XT1 oscillation circuitry). In the case of a real-time clock in operating or sleep mode, the current value of the microcontroller is I<sub>DD1</sub> or I<sub>DD2</sub> plus the value of I<sub>RTC</sub>. In addition, when selecting a low-speed internal oscillator, I<sub>FIL</sub> must be added. I<sub>DD2</sub> when the secondary system clock is running contains the operating current of the real-time clock.
- Note4: This is the current that only flows to the 15-bit interval timer (excluding the operating current of the low-speed internal oscillator and the XT1 oscillation circuit). With a 15-bit interval timer running in run mode or sleep mode, the current value of the microcontroller is I<sub>DD1</sub> or I<sub>DD2</sub> plus I<sub>IT</sub>. In addition, when selecting a low-speed internal oscillator, I<sub>FIL</sub> must be added.
- Note5: This is the current that only flows to the watchdog timer (including the operating current of the low-speed internal oscillator). With the watchdog timer running, the current value of the microcontroller is I<sub>DD1</sub> or I<sub>DD2</sub> or I<sub>DD3</sub> plus the value of I<sub>WDT</sub>.
- Note6: This is the current that only flows to the A/D converter. In either operating mode or sleep mode with the A/D converter running, the current value of the microcontroller is I<sub>DD1</sub> or I<sub>DD2</sub> plus the value of the I<sub>ADC</sub>.
- Note7: This is the current that only flows to the LVD circuit. In the case of LVD circuit operation, the



current value of the microcontroller is IDD1 or IDD2 or IDD3 plus I the value of LVD.

- Note8: This is the current that only flows to the D/A converter. In the case of the D/A converter in operating or sleep mode, the current value of the microcontroller is I<sub>DD1</sub> or I<sub>DD2</sub> plus the value of the I<sub>DAC</sub>.
- Note9: This is the current that only flows to the comparator circuit. With the comparator circuit running, the current value of the microcontroller is  $I_{DD1}$  or  $I_{DD2}$  or  $I_{DD3}$  plus the value of  $I_{CMP}$ .

Remark:

- 1. FIL: The clock frequency of the low-speed internal oscillator
- 2. The typical temperature condition is  $T_A = 25^{\circ}C$ .
- 3. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.



# 6.6 AC Characteristics

| Item                                                           | Symbol                                 | (                                                  | Condition                  |                            | Min                    | Тур  | Max  | Unit |
|----------------------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------|----------------------------|------------------------|------|------|------|
| Instruction period<br>(minimum                                 | Τ                                      | The main system<br>(F <sub>MAIN</sub> ) runs       | l clock                    | 2.0V≤V <sub>DD</sub> ≤5.5V | 0.015625               | -    | 1    | us   |
| instruction<br>execution time)                                 | ICY                                    | The secondary sys<br>clock (F <sub>SUB)</sub> runs | tem                        | 2.0V≤V <sub>DD</sub> ≤5.5V | 28.5                   | 30.5 | 31.3 | us   |
| External system                                                | F <sub>EX</sub>                        | $2.0V \leq V_{DD} \leq 5.5V$                       |                            |                            | 1.0                    | -    | 20.0 | MHz  |
| clock frequency                                                | F <sub>EXS</sub>                       | $2.0V \leq V_{DD} \leq 5.5V$                       |                            |                            | 32.0                   | -    | 35.0 | KHz  |
| The high- or low-<br>level width of the                        | Т <sub>ехн</sub> ,<br>T <sub>exl</sub> | 2.0V≤V <sub>DD</sub> ≤5.5V                         |                            |                            | 24                     | -    | -    | ns   |
| external system<br>clock input                                 | Texhs,<br>Texls                        | 2.0V≪V <sub>DD</sub> ≪5.5V                         |                            |                            | 13.7                   | -    | -    | us   |
| TI00 ~ TI03, TI10 ~<br>TI17 input high- and<br>low-level width | Ттін, Тто                              | 2.0V≪V <sub>DD</sub> ≪5.5V                         |                            |                            | 1/F <sub>мск</sub> +10 | -    | -    | ns   |
| The input period of                                            | Та                                     | Tue                                                | 2.4V                       | ≤EV <sub>DD</sub> ≤5.5V    | 100                    | -    | -    | ns   |
| the timer TimerA                                               | TC                                     | TAIO                                               | $2.0V \leq EV_{DD} < 2.4V$ |                            | 300                    | -    | -    | ns   |
| The high- and low-                                             | T <sub>taih</sub> ,                    | Tuo                                                | 2.4V                       | ≤EV <sub>DD</sub> ≤5.5V    | 40                     | -    | -    | ns   |
| timer TimerA input                                             | TTAIL                                  | I AIO                                              | 2.0V                       | ≤EV <sub>DD</sub> <2.4V    | 120                    | -    | -    | ns   |

 $(T_{A}=-40\sim125^{\circ}C, 2.0V \le EV_{DD}=V_{DD} \le 5.5V, V_{SS}=EV_{SS}=0V)$ 

Remark:

- 1. F<sub>MCK</sub>: Timer4, Timer8 unit operating clock frequency.
- 2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.



| Item                                                              | Symbol                                   | (                                    | Condition                             | Min                   | Tvp | Max | Unit |
|-------------------------------------------------------------------|------------------------------------------|--------------------------------------|---------------------------------------|-----------------------|-----|-----|------|
| The high or low level<br>width of the M input of<br>the timer     | Ттмін,<br>Ттміц                          | TMIOA0, TMIOA1<br>TMIOC0, TMIOC1     | , TMIOB0, TMIOB1<br>I, TMIOD0, TMIOD1 | 3/Естк                | -   | -   | ns   |
| Timer M forces the                                                |                                          |                                      | 2MHz <f<sub>CLK≪48MHz</f<sub>         | 1                     | -   | -   | us   |
| cutoff of the low width of the signal input                       | T <sub>TMSIL</sub>                       | P136/INTP0                           | F <sub>CLK</sub> ≪2MHz                | 1/F <sub>CLK</sub> +1 | -   | -   | us   |
| The high and low level<br>width of the timer B<br>input           | Т <sub>твін</sub> ,<br>Т <sub>твіl</sub> | TBIOA, TBIOB                         | TBIOA, TBIOB                          |                       |     | -   | ns   |
| Output frequencies of<br>TO00 ~ TO03,<br>TO10 ~ TO17,             |                                          | 4.0V≪EV <sub>DD</sub> ≪5.5           | 4.0V≤EV <sub>DD</sub> ≤5.5V           |                       |     | 16  | MHz  |
| TAIO0, TAO0,<br>TMIOA0, TMIOA1,<br>TMIOB0, TMIOB1,                | Fто                                      | 2.4V≤EV <sub>DD</sub> <4.0'          | -                                     | -                     | 8   | MHz |      |
| TMIODO, TMIOD1,<br>TBIOA, TBIOB                                   |                                          | 2.0V≤EV <sub>DD</sub> <2.4           | -                                     | -                     | 4   | MHz |      |
| Output frequencies of                                             |                                          | 4.0V≤EV <sub>DD</sub> ≤5.5           | -                                     | -                     | 16  | MHz |      |
| CLKBUZ0 and                                                       | F <sub>PCL</sub>                         | 2.4V≤EV <sub>DD</sub> <4.0           | -                                     | -                     | 8   | MHz |      |
| CLKBUZ1                                                           |                                          | 2.0V≤EV <sub>DD</sub> <2.4           | V                                     | -                     | -   | 4   | MHz  |
| The high- and low-level<br>width of the interrupt<br>input        | Tinth,<br>Tintl                          | INTP0~INTP11                         | 2.0V≤EV <sub>DD</sub> ≤5.5V           | 1                     | -   | -   | us   |
| The key interrupts the<br>high or low level width<br>of the input | Tĸĸ                                      | KR0 ~KR7 2.0V≤EV <sub>DD</sub> ≤5.5V |                                       | 250                   | -   | -   | ns   |
| The low-level width of<br>RESETB                                  | T <sub>RSL</sub>                         |                                      | -                                     | 10                    | -   | -   | us   |

(T<sub>A</sub>= -40~125°C, 2.0V≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=EV<sub>SS</sub>=0V)

Remark: The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.



# 6.7 Peripheral Features

#### 6.7.1 Universal Interface Unit

#### (1) UART mode

(T<sub>A</sub>= -40~85°C、2.0V≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V、V<sub>SS</sub>=EV<sub>SS</sub>=0V)

| ltem                  |                               | Condition                            | Specif | Lipit          |       |  |
|-----------------------|-------------------------------|--------------------------------------|--------|----------------|-------|--|
| nem                   | Condition                     |                                      | Min    | Max            | Unit  |  |
| Transfer rate 2.0V≤EV |                               | -                                    | -      | <b>F</b> мск/6 | bps   |  |
|                       | $2.0V \leq EV_{DD} \leq 5.5V$ | The theoretical value of the maximum |        | 10.6           | Mhno  |  |
|                       |                               | transfer rate, FMCK=FCLK             | -      | 10.6           | Ninha |  |

#### (T<sub>A</sub>=85~125°C, 2.0V≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=EV<sub>SS</sub>=0V)

| ltem          |                               | Condition                                         | Specif  | Linit                |       |  |
|---------------|-------------------------------|---------------------------------------------------|---------|----------------------|-------|--|
| nem           | Condition                     |                                                   | Min Max |                      | Offic |  |
| Transfer rate |                               | -                                                 | -       | F <sub>мск</sub> /12 | bps   |  |
|               | $2.0V \leq EV_{DD} \leq 5.5V$ | The theoretical value of the maximum              | _       | 53                   | Mbps  |  |
|               |                               | transfer rate, F <sub>MCK</sub> =F <sub>CLK</sub> |         | 0.0                  |       |  |

Remark: It is guaranteed by the design and not tested in mass production.



| (2) | Three-wire SPI m | node (master mode, | internal clock output). |
|-----|------------------|--------------------|-------------------------|
|-----|------------------|--------------------|-------------------------|

| (T <sub>A</sub> = -40~125°C, | $2.0V \leq EV_{DD} = V_{DD} \leq 5.5V, V_{SS} = EV_{SS} = 0V$ |
|------------------------------|---------------------------------------------------------------|
|------------------------------|---------------------------------------------------------------|

| ltere                            | Cumple of        | Condition                     |                             | -40~85                  | °C  | 85~125°C                |     | Linit |  |
|----------------------------------|------------------|-------------------------------|-----------------------------|-------------------------|-----|-------------------------|-----|-------|--|
| item                             | Symbol           | (                             | Jonation                    | Min                     | Max | Min                     | Max | Unit  |  |
|                                  |                  |                               | 4.0V≤EV <sub>DD</sub> ≤5.5V | 31.25                   | -   | 62.5                    | -   | ns    |  |
| SCLKp cycle                      | -                | T <sub>KCY1</sub> ≥           | 2.7V≤EV <sub>DD</sub> ≤5.5V | 41.67                   | -   | 83.33                   | -   | ns    |  |
| time                             | I KCY1           | 2/Fclk                        | 2.4V≤EV <sub>DD</sub> ≤5.5V | 65                      | -   | 125                     | -   | ns    |  |
|                                  |                  |                               | 2.0V≤EV <sub>DD</sub> ≤5.5V | 125                     | -   | 250                     | -   | ns    |  |
|                                  |                  | 4.0V≤EV <sub>DD</sub> ≤       | 5.5V                        | Тксү1/2-4               | -   | Тксү1/2-7               | -   | ns    |  |
| SCLKP                            | Ткн1             | 2.7V≤EV <sub>DD</sub> ≤5.5V   |                             | T <sub>KCY1</sub> /2-5  | -   | Т <sub>КСҮ1</sub> /2-10 | -   | ns    |  |
| level width                      | T <sub>KL1</sub> | $2.4V \leq EV_{DD} \leq 5.5V$ |                             | T <sub>KCY1</sub> /2-10 | -   | T <sub>KCY1</sub> /2-20 | -   | ns    |  |
|                                  |                  | 2.0V≤EV <sub>DD</sub> ≤       | 5.5V                        | Тксү1/2-19              | -   | Тксү1/2-38              | -   | ns    |  |
| SDIp                             |                  | 4.0V≤EV <sub>DD</sub> ≤       | 4.0V≪EV <sub>DD</sub> ≪5.5V |                         | -   | 23                      | -   | ns    |  |
| preparation                      | -<br>-           | 2.7V≤EV <sub>DD</sub> ≤       | 5.5V                        | 17                      | -   | 33                      | -   | ns    |  |
| time (to                         | I SIK1           | 2.4V≤EV <sub>DD</sub> ≤       | 5.5V                        | 20                      | -   | 38                      | -   | ns    |  |
| SCLKp↑).                         |                  | 2.0V≤EV <sub>DD</sub> ≤       | 5.5V                        | 28                      | -   | 55                      | -   | ns    |  |
| SDIp hold                        |                  |                               |                             |                         |     |                         |     |       |  |
| time                             | TKSI1            | $2.0V \leq EV_{DD} \leq$      | 5.5V                        | 5                       | -   | 10                      | -   | ns    |  |
| (to SCLKp↑).                     |                  |                               |                             |                         |     |                         |     |       |  |
| $SCLKp{\downarrow}{\rightarrow}$ |                  |                               |                             |                         |     |                         |     |       |  |
| SDOp                             | Turan            | $2.0V \leq EV_{DD} \leq$      | 5.5V                        |                         | 5   |                         | 10  | nc    |  |
| output delay                     | TKS01            | C=20pF Note1                  |                             | -                       | 5   | -                       | 10  | 115   |  |
| time                             |                  |                               |                             |                         |     |                         |     |       |  |

Note1: C is the load capacitance of the SCLKp and SDOp output lines.

Note: The SDIp pin is selected as the usual input buffer and the SDOp pin and SCLKp pin are selected as the usual output mode through the port input mode register and the port output mode register.

Remark: It is guaranteed by the design and not tested in mass production.



|                                     |                             | 0,2.01 (21                       |                                | -40~8                          | 5°C                              | 85~125°                          | С                           |      |
|-------------------------------------|-----------------------------|----------------------------------|--------------------------------|--------------------------------|----------------------------------|----------------------------------|-----------------------------|------|
| Item                                | Symbol                      | Cor                              | ndition                        | Min                            | Max                              | Min                              | Max                         | Unit |
|                                     |                             | 4.0V≤EV <sub>DD</sub>            | 20MHz <f<sub>MCK</f<sub>       | 8/Fмск                         | -                                | 16/Fмск                          | -                           | ns   |
|                                     |                             | ≪5.5V                            | F <sub>MCK</sub> ≪20MHz        | 6/Fмск                         | -                                | 12/Fмск                          | -                           | ns   |
|                                     |                             | 2.7V≤EV <sub>DD</sub>            | 16MHz <f<sub>MCK</f<sub>       | 8/Fмск                         | -                                | 16/Fмск                          | -                           | ns   |
| SCLKp                               | TKCV2                       | ≤5.5V                            | F <sub>MCK</sub> ≪16MHz        | 6/F <sub>MCK</sub>             | -                                | 12/F <sub>МСК</sub>              | -                           | ns   |
| Cycle time                          | TROTZ                       | 2.4V≤EV <sub>DD</sub> ≤5.5V      |                                | 6/F <sub>мск</sub> and<br>≥500 | -                                | 12/F <sub>мск</sub> and<br>≥1000 | -                           | ns   |
|                                     | 2.0V≤EV <sub>DD</sub> ≤5.5V |                                  | 6/F <sub>мск</sub> and<br>≥750 | -                              | 12/F <sub>мск</sub> and<br>≥1500 | -                                | ns                          |      |
| SCLKp                               |                             | 4.0V≤EV <sub>DD</sub> ≤          | $4.0V \leq EV_{DD} \leq 5.5V$  |                                | -                                | T <sub>KCY1</sub> /2-14          | -                           | ns   |
| High/low                            | Ткн2                        | 2.7V≤EV <sub>DD</sub> ≤5.5V      |                                | Тксү1/2-8                      | -                                | Тксү1/2-16                       | -                           | ns   |
| level<br>width                      | T <sub>KL2</sub>            | 2.0V≤EV <sub>DD</sub> ≤5.5V      |                                | Тксү1/2-18                     | -                                | Тксү1/2-36                       | -                           | ns   |
| SDIp                                |                             | 2.7V≤EV <sub>DD</sub> ≤          | 5.5V                           | 1/F <sub>мск</sub> +20         | -                                | 1/F <sub>мск</sub> +40           | -                           | ns   |
| Preparation<br>time (to<br>SCLKp↑). | T <sub>SIK2</sub>           | 2.0V≤EV <sub>DD</sub> ≤          | 5.5V                           | 1/Fмск+30                      | -                                | 1/Fмск+60                        | -                           | ns   |
| SDIp<br>Hold time (to<br>SCLKp↑).   | T <sub>KSI2</sub>           | 2.0V≤EV <sub>DD</sub> ≤          | 2.0V≤EV <sub>DD</sub> ≤5.5V    |                                | -                                | 1/F <sub>мск</sub> +62           | -                           | ns   |
| SCLKp↓                              |                             | 2.7V≤EV <sub>DD</sub> ≤<br>Note1 | 5.5V, C=30pF                   | -                              | 2/F <sub>MCK</sub> +<br>44       | -                                | 2/F <sub>мск</sub> +<br>66  | ns   |
| $\rightarrow$ the SDOp output delay | T <sub>KSO2</sub>           | 2.4V≪EV <sub>DD</sub> ≪<br>Note1 | 5.5V, C=30pF                   | -                              | 2/F <sub>мск+</sub><br>75        | -                                | 2/F <sub>мск+</sub><br>113  | ns   |
| time                                |                             | 2.0V≪EV <sub>DD</sub> ≪<br>Note1 | 5.5V, C=30pF                   | -                              | 2/F <sub>MCK</sub> +<br>100      | -                                | 2/F <sub>мск</sub> +<br>150 | ns   |

| (3) | Three-wire SPI | mode | (slave | mode, | external | clock input). |  |
|-----|----------------|------|--------|-------|----------|---------------|--|
|-----|----------------|------|--------|-------|----------|---------------|--|

(T<sub>A</sub>= -40~125°C, 2.0V≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=EV<sub>SS</sub>=0V)

Note1: C is the load capacitance of the SCLKp and SDOp output lines.

Note: The SDIp pin and SCLKp pin are selected as the usual input buffers and the SDOp pin is selected as the usual output mode through the port input mode register and the port output mode register. Remark: It is guaranteed by the design and not tested in mass production.



| (4) | Four-wire SPI mode | (slave mode, | external | clock input). |
|-----|--------------------|--------------|----------|---------------|
|-----|--------------------|--------------|----------|---------------|

| ltom      | Current of | Condition |                                                               | -40~85°C                |     | 85~125°C                |     | Linit |
|-----------|------------|-----------|---------------------------------------------------------------|-------------------------|-----|-------------------------|-----|-------|
| nem       | Symbol     |           | Condition                                                     | Min                     | Max | Min                     | Max | Unit  |
| 88100     | Tssik      | DAPmn=0   | $2.7V \leqslant \text{EV}_{\text{DD}} \leqslant 5.5 \text{V}$ | 120                     | -   | 240                     | -   | ns    |
| SSIUU     |            |           | $2.0V \leqslant \text{EV}_{\text{DD}} \leqslant 5.5 \text{V}$ | 200                     | -   | 400                     | -   | ns    |
| timo      |            | DAPmn=1   | $2.7V \leqslant \text{EV}_{\text{DD}} \leqslant 5.5 \text{V}$ | 1/F <sub>MCK</sub> +120 | -   | 1/F <sub>MCK</sub> +240 | -   | ns    |
| une       |            |           | $2.0V \leqslant \text{EV}_{\text{DD}} \leqslant 5.5 \text{V}$ | 1/F <sub>MCK</sub> +200 | -   | 1/F <sub>MCK</sub> +400 | -   | ns    |
|           | Tĸssi      | DAPmn=0   | $2.7V \leqslant \text{EV}_{\text{DD}} \leqslant 5.5 \text{V}$ | 1/Fмск+120              | -   | 1/Fмск+240              | -   | ns    |
| SSI00     |            |           | $2.0V \leqslant \text{EV}_{\text{DD}} \leqslant 5.5 \text{V}$ | 1/F <sub>MCK</sub> +200 | -   | 1/F <sub>MCK</sub> +400 | -   | ns    |
| Hold time |            | DAPmn=1   | $2.7V \leqslant EV_{DD} \leqslant 5.5V$                       | 120                     | -   | 240                     | -   | ns    |
|           |            |           | $2.0V \leqslant EV_{\text{DD}} \leqslant 5.5V$                | 200                     | -   | 400                     | -   | ns    |

Note: The SDIp pin and SCLKp pin are selected as the usual input buffers and the SDOp pin is selected as the usual output mode through the port input mode register and the port output mode register. Remark: It is guaranteed by the design and not tested in mass production.


#### (5) Simple IIC mode

(T<sub>A</sub>= -40~125°C, 2.0V≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=EV<sub>SS</sub>=0V)

| lt e ve    | Quarte et                            | Que altiture                                                  | -40~8      | 5°C        | 85~125     | 1.1       |        |
|------------|--------------------------------------|---------------------------------------------------------------|------------|------------|------------|-----------|--------|
| Item       | Symbol                               | Condition                                                     | Min        | Max        | Min        | Max       | Unit   |
|            |                                      | $2.7V \leqslant \text{EV}_{\text{DD}} \leqslant 5.5 \text{V}$ |            | 1000 Note1 |            | AOO Note1 |        |
| SCI r      |                                      | $C_b$ = 50 pF, $R_b$ = 2.7 k $\Omega$                         | -          | 1000       | -          | 400       | КПZ    |
| slock      | Fact                                 | $2.0V \leqslant EV_{DD} \leqslant 5.5V$                       |            |            |            | 100 Note1 |        |
| frequency  | CIUCK FSCL                           | $C_b=100 \text{ pF}, \text{ R}_b=3 \text{ k}\Omega$           | -          | 400        | -          | 100       | IXI IZ |
| nequency   |                                      | $2.0V \leqslant EV_{DD} \leqslant 2.7V$                       | _          | 300 Note1  | _          | 75 Note1  | КН7    |
|            |                                      | $C_b=100 \text{ pF},  \text{R}_b=5  \text{k}\Omega$           | _          | 300        | -          | 75        | IXI 12 |
|            |                                      | $2.7V \leqslant \text{EV}_{\text{DD}} \leqslant 5.5 \text{V}$ | 175        | _          | 1200       | _         | ns     |
| Hold time  |                                      | $C_b = 50 \text{ pF},  \text{R}_b = 2.7  \text{k}\Omega$      | 475        | -          | 1200       | _         | 115    |
| when       | TLOW                                 | $2.0V \leqslant EV_{DD} \leqslant 5.5V$                       | 1150       | _          | 4600       | _         | ne     |
| SCLr is    | LOW                                  | $C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{ k}\Omega$       | 1150       | -          | 4000       | -         | 115    |
| low        |                                      | $2.0V \leqslant EV_{DD} \leqslant 2.7V$                       | 1550       | _          | 6500       | _         | ns     |
|            |                                      | $C_b$ = 100 pF, $R_b$ = 5 k $\Omega$                          | 1000       | _          | 0000       | _         | 113    |
|            |                                      | $2.7V \leqslant \text{EV}_{\text{DD}} \leqslant 5.5V$         | 475        | _          | 1200       | -         | ns     |
| Hold time  |                                      | $C_b$ = 50 pF, $R_b$ = 2.7 K $\Omega$                         | -10        |            | 1200       |           | 110    |
| when       | Тлен                                 | $2.0V \leqslant \text{EV}_{\text{DD}} \leqslant 5.5 \text{V}$ | 1150       | _          | 4600       | -         | ns     |
| SCLr is    | INGH                                 | $C_b$ = 100 pF, $R_b$ = 3 K $\Omega$                          | 1100       |            | +000       |           | 110    |
| high       |                                      | $2.0V \leqslant \text{EV}_{\text{DD}} \leqslant 2.7 \text{V}$ | 1550       | _          | 6500       | -         | ns     |
|            |                                      | $C_b$ = 100 pF, $R_b$ = 5 K $\Omega$                          | 1000       | _          | 0000       | _         | 113    |
|            |                                      | $2.7V \leqslant \text{EV}_{\text{DD}} \leqslant 5.5V$         | 1/Fмск+85  | -          | 1/Fмск+    | _         | ns     |
| Data       |                                      | $C_b$ = 50 pF, $R_b$ = 2.7 K $\Omega$                         | Note2      |            | 220 Note2  |           | 110    |
| settling   | Tourtuat                             | $2.0V \leqslant \text{EV}_{\text{DD}} \leqslant 5.5 \text{V}$ | 1/Fмск+145 | _          | 1/Fмск+    | _         | ns     |
| time       | I SU: THAT                           | $C_b = 100 \text{ pF},  \text{R}_b = 3  \text{K} \Omega$      | Note2      | _          | 580 Note2  | _         | 113    |
| (received) |                                      | $2.0V \leqslant EV_{DD} \leqslant 2.7V$                       | 1/Fмск+230 | _          | 1/Fмск+    | _         | ne     |
|            |                                      | $C_b$ = 100 pF, $R_b$ = 5 K $\Omega$                          | Note2      | -          | 1200 Note2 | _         | 115    |
|            |                                      | $2.7V \leqslant EV_{DD} \leqslant 5.5V$                       | _          | 305        | _          | 770       | ne     |
| Data Hold  |                                      | $C_b$ = 50 pF, $R_b$ = 2.7 K $\Omega$                         | -          | 305        | -          | 110       | 115    |
|            | T                                    | $2.0V \leqslant \text{EV}_{\text{DD}} \leqslant 5.5\text{V}$  |            | 255        |            | 1420      | 2      |
| (Send)     | I HU: DAT                            | $C_b$ = 100 pF, $R_b$ = 3 K $\Omega$                          | -          | 300        | -          | 1420      | 115    |
| (Send)     |                                      | $2.0V \leq EV_{DD} \leq 2.7V$                                 |            | 105        |            | 2070      | 20     |
|            | $C_b$ = 100 pF, $R_b$ = 5 K $\Omega$ | -                                                             | 400        | -          | 2070       | 115       |        |

Note 1: Must be set to at least  $F_{MCK}/4$ .

Note 2: The setpoint of the F<sub>MCK</sub> cannot exceed the hold times of SCLr="L" and SCLr="H".



# 6.7.2 Serial Interface IICA

#### (1) I<sup>2</sup>C standard mode

#### $(T_{A}=-40\sim125^{\circ}C, 2.0V \le EV_{DD}=V_{DD} \le 5.5V, V_{SS}=EV_{SS}=0V)$

|                                                         |                      |                                       | Specif | Specification |      |
|---------------------------------------------------------|----------------------|---------------------------------------|--------|---------------|------|
| Item                                                    | Symbol               | Condition                             | va     | lue           | Unit |
|                                                         |                      |                                       | Min    | Max           |      |
| SCLAr clock frequency                                   | Fscl                 | Standard mode: F <sub>CLK</sub> ≥1MHz | -      | 100           | KHz  |
| The time at which the startup condition was established | TSU: STA             | -                                     | 4.7    | -             | us   |
| Hold time of the startup condition                      | Thd: sta             | -                                     | 4.0    | -             | us   |
| When SCLAr is low, hold time                            | T <sub>LOW</sub>     | -                                     | 4.7    | -             | us   |
| When SCLAr is high, the hold time is high               | Тнідн                | -                                     | 4.0    | -             | us   |
| Data settling time (received)                           | TSU: THAT            | -                                     | 250    | -             | ns   |
| Data Hold Time (Send) Note2                             | Thd:dat              | -                                     | 0      | 3.45          | us   |
| The time at which the stop condition was established    | T <sub>SU: STO</sub> | -                                     | 4.0    | -             | us   |
| Bus idle time                                           | TBUF                 | -                                     | 4.7    | -             | us   |

Note 1: The first clock pulse is generated after the start condition or restart condition is generated.

Note 2: The maximum value of T<sub>HD: DAT</sub> needs to be guaranteed during normal transmission, and it is necessary to wait for the answer (ACK) to be performed.

Note: The maximum value of  $C_b$  (communication line capacitance) for each mode and  $R_b$  (the pull-up resistance value of the communication line) at this time are as follows: standard mode:  $C_b=400pF$ ,  $R_b=2.7K\Omega$ 



#### (2) I<sup>2</sup>C fast mode

(T<sub>A</sub>= -40~125°C, 2.0V≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=EV<sub>SS</sub>=0V)

| ltom                                     | Symbol               | Condition                           | Specificat | Llnit |      |  |
|------------------------------------------|----------------------|-------------------------------------|------------|-------|------|--|
| nem                                      | Symbol               | Condition                           | Min        | Max   | Unit |  |
| SCLAr clock frequency                    | FscL                 | Fast mode: F <sub>CLK</sub> ≥3.5MHz | -          | 400   | KHz  |  |
| The time at which the startup            | Τ                    |                                     | 0.6        |       |      |  |
| condition was established                | I SU: STA            | -                                   | 0.6        | -     | us   |  |
| Hold time of the startup condition Note1 | THD: STA             | -                                   | 0.6        | -     | us   |  |
| When SCLAr is low, hold time             | TLOW                 | -                                   | 1.3        | -     | us   |  |
| When SCLAr is high, the hold time is     | Turan                |                                     | 0.6        |       |      |  |
| high                                     | I HIGH               | -                                   | 0.6        | -     | us   |  |
| Data settling time (received)            | TSU: THAT            | -                                   | 100        | -     | ns   |  |
| Data Hold Time (Send) Note2              | T <sub>HD: DAT</sub> | -                                   | 0          | 0.9   | us   |  |
| The time at which the stop condition     | Ŧ                    |                                     | 0.6        |       |      |  |
| was established                          | was established      |                                     | 0.0        | -     | us   |  |
| Bus idle time                            | T <sub>BUF</sub>     | -                                   | 1.3        | -     | us   |  |

Note 1: The first clock pulse is generated after the start condition or restart condition is generated.

Note 2: The maximum value of T<sub>HD:DAT</sub> needs to be guaranteed during normal transmission, and it is necessary to wait for the answer (ACK) to be performed.

Note: The maximum value of C<sub>b</sub> (communication line capacitance) for each mode and R<sub>b</sub> (the pull-up resistance value of the communication line) at this time are as follows:

Fast mode:  $C_b=320pF$ ,  $R_b=1.1K\Omega$ 



#### (3) I<sup>2</sup>C Enhanced fast Mode

(T<sub>A</sub>= -40~125°C, 2.0V≪EV<sub>DD</sub>=V<sub>DD</sub>≪5.5V, V<sub>SS</sub>=EV<sub>SS</sub>=0V)

| liana                                                   | Cumhal                | Condition                                      | Specificat | 1.1  |      |  |
|---------------------------------------------------------|-----------------------|------------------------------------------------|------------|------|------|--|
| item                                                    | Symbol                | Condition                                      | Min        | Max  | Unit |  |
| SCLAr clock frequency                                   | F <sub>SCL</sub>      | Enhanced Fast Mode:<br>F <sub>CLK</sub> ≥10MHz | -          | 1000 | KHz  |  |
| The time at which the startup condition was established | TSU: STA              | -                                              | 0.26       | -    | us   |  |
| Hold time of the startup condition Note1                | THD: STA              | -                                              | 0.26       | -    | us   |  |
| When SCLAr is low, hold time                            | T <sub>LOW</sub>      | -                                              | 0.5        | -    | us   |  |
| When SCLAr is high, the hold time is high               | Тнідн                 | -                                              | 0.26       | -    | us   |  |
| Data settling time (received)                           | T <sub>SU: THAT</sub> | -                                              | 50         | -    | ns   |  |
| Data Hold Time (Send) Note2                             | Thd:dat               | -                                              | 0          | 0.45 | us   |  |
| The time at which the stop condition was established    | T <sub>SU: STO</sub>  | -                                              | 0.26       | -    | us   |  |
| Bus idle time                                           | TBUF                  | -                                              | 0.5        | -    | us   |  |

Note 1: The first clock pulse is generated after the start condition or restart condition is generated.

Note 2: The maximum value of T<sub>HD:DAT</sub> needs to be guaranteed during normal transmission, and it is necessary to wait when performing a reply (ACK).

Note: The maximum value of  $C_b$  (communication line capacitance) for each mode and  $R_b$  (the pull-up resistance value of the communication line) at this time are as follows: Enhanced Fast Mode:  $C_b=120$ pF,  $R_b=1.1$ K $\Omega$ 



# 6.8 Analog Characteristics

### 6.8.1 A/D Converter Features

Differentiation of A/D converter characteristics

| Reference voltage                          | Reference voltage (+) =AV <sub>REFF</sub> | Reference voltage (+) =V <sub>DD</sub> |
|--------------------------------------------|-------------------------------------------|----------------------------------------|
| Input channel                              | Reference voltage (-) =AVREFM             | Reference voltage (-) =Vss             |
| ANIO~ ANI20                                |                                           |                                        |
| The internal reference voltage, the output | Refer to 6.8.1 (1)                        | Refer to 6. 8.1 (2)                    |
| voltage of the temperature sensor          |                                           |                                        |

(1) Select the case for reference voltage(+)=AV<sub>REFP</sub>/ANI0 and reference voltage(-)=AV<sub>REFM</sub>/ANI1 (T<sub>A</sub>= -40~125°C, 2.0V≤AV<sub>REFP</sub>≤EV<sub>DD</sub>=V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=0V, reference voltage(+)=AV<sub>REFP</sub>, Reference voltage(-)=AV<sub>REFM</sub>=0V).

| Item                                         | Symbol           | Conc                                                                                                                                   | lition                                                          | Min  | Тур       | Max    | Unit               |
|----------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------|-----------|--------|--------------------|
| resolution                                   | RES              | -                                                                                                                                      |                                                                 | -    | 12        | -      | bit                |
| Combined error Note1                         | ET               | 12-bit resolution                                                                                                                      | $2.0V \leqslant \! AV_{REFP} \leqslant 5.5V$                    | -    | 3         | -      | LSB                |
| Zero scale error<br>Note1                    | Ezs              | 12-bit resolution                                                                                                                      | $2.0V \leq AV_{REFP} \leq 5.5V$                                 | -    | 0         | -      | LSB                |
| Full scale error Note1                       | E <sub>FS</sub>  | 12-bit resolution                                                                                                                      | $2.0V \leqslant \! AV_{REFP} \leqslant 5.5V$                    | -    | 0         | -      | LSB                |
| Integral linearity<br>error <sup>Note1</sup> | EL               | 12-bit resolution                                                                                                                      | $2.0V \leq AV_{REFP} \leq 5.5V$                                 | -1   | -         | 1      | LSB                |
| Differential linearity<br>error Note1        | ED               | 12-bit resolution                                                                                                                      | $2.0V \leq AV_{REFP} \leq 5.5V$                                 | -1.5 | -         | 1.5    | LSB                |
|                                              |                  | 12-bit resolution<br>Conversion objects:<br>ANI2~ ANI15                                                                                | $2.0V \leqslant V_{DD} \leqslant 5.5V$                          | 45   | -         | -      | 1/F <sub>ADC</sub> |
| Conversion time<br><sub>Note3</sub>          | Τςονν            | 12-bit resolution<br>Conversion objects:<br>internal reference<br>voltage, temperature<br>sensor output voltage,<br>PGA output voltage | $2.0V \leq V_{DD} \leq 5.5V$                                    | 72   | -         | -      | 1/F <sub>ADC</sub> |
| External input resistance                    | R <sub>AIN</sub> | $R_{AIN}$ < (Ts / ( $F_{ADC}$ x C                                                                                                      | C <sub>ADC</sub> x In(2 <sup>12+2</sup> )) - R <sub>ADC</sub> ) | -    | 7.5 Note4 | -      | KΩ                 |
| Sampling switch resistance                   | R <sub>ADC</sub> | -                                                                                                                                      |                                                                 | -    | -         | 1.5    | KΩ                 |
| Sample-and-hold capacitor                    | CADC             | -                                                                                                                                      |                                                                 | -    | 2         |        | pF                 |
|                                              |                  | ANI2~                                                                                                                                  | ANI15                                                           | 0    | -         | AVREFP | V                  |



#### BAT32A279 Datasheet

| Analog input voltage |                  | Internal reference voltage (2.0V $\leq$ V <sub>DD</sub> $\leq$ 5.5V).                    | V <sub>BGR</sub> Note2    | V |
|----------------------|------------------|------------------------------------------------------------------------------------------|---------------------------|---|
|                      | V <sub>AIN</sub> | The output voltage of the temperature sensor (2.0 V $\leq$ V <sub>DD</sub> $\leq$ 5.5V). | V <sub>TMPS25</sub> Note2 | V |

Note 1: Quantization error is not included (± 1/2 LSB).

Note 2: Please refer to "6.8.2 Characteristics of Temperature Sensors/Internal Reference Voltages".

Note 3: The F<sub>ADC</sub> is the operating frequency of the AD, with a maximum operating frequency of 64MHz.

Note 4: It is guaranteed by the design and not tested in mass production. The typical value is the default sampling period Ts=13.5, and the conversion speed is F<sub>ADC</sub>=64MHz.



(2) Select the case where reference voltage (+) =V<sub>DD</sub> and reference voltage (-) = V<sub>SS</sub> are selected  $(T_A = -40 \sim 125^{\circ}C, 2.0V \leq EV_{DD} = V_{DD} \leq 5.5V, V_{SS} = EV_{SS} = 0V$ , Reference Voltage (+)=V<sub>DD</sub>,

|                                              | 5               | ( )                                                                                                                                    |                                                                                                                       |     |              |                 |                    |
|----------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----|--------------|-----------------|--------------------|
| Item                                         | Symbol          | Cor                                                                                                                                    | ndition                                                                                                               | Min | Тур          | Max             | Unit               |
| resolution                                   | RES             |                                                                                                                                        | -                                                                                                                     | -   | 12           | -               | bit                |
| Combined error Note1                         | ET              | 12-bit resolution                                                                                                                      | $2.0V \leqslant \! AV_{REFP} \leqslant \! 5.5V$                                                                       | -   | -            | -               | LSB                |
| Zero scale error Note1                       | Ezs             | 12-bit resolution                                                                                                                      | $2.0V \leqslant AV_{REFP} \leqslant 5.5V$                                                                             | -   | -            | -               | LSB                |
| Full scale error Note1                       | E <sub>FS</sub> | 12-bit resolution $2.0V \leq AV_{REFP} \leq 5.5V$                                                                                      |                                                                                                                       | -   | -            | -               | LSB                |
| Integral linearity<br>error <sup>Note1</sup> | EL              | 12-bit resolution                                                                                                                      | 12-bit resolution $2.0V \leq AV_{REFP} \leq 5.5V$                                                                     |     | -            | 2               | LSB                |
| Differential linearity<br>error Note1        | ED              | 12-bit resolution                                                                                                                      | $2.0V \leq AV_{REFP} \leq 5.5V$                                                                                       | -3  | -            | 3               | LSB                |
| Conversion time<br>Note3                     |                 | 12-bit resolution<br>Conversion objects:<br>ANI0 ~ ANI15                                                                               | 2.0V≤V <sub>DD</sub> ≤5.5V                                                                                            | 45  | -            | -               | 1/Fadc             |
|                                              | Тсолу           | 12-bit resolution<br>Conversion objects:<br>internal reference<br>voltage, output<br>voltage of<br>temperature sensor,                 | 12-bit resolution<br>Conversion objects:<br>internal reference<br>voltage, output<br>voltage of<br>emperature sensor, |     | -            | -               | 1/F <sub>ADC</sub> |
| External input resistance                    | RAIN            | $R_{AIN}$ < (Ts / ( $F_{ADC}$ x                                                                                                        | Cadd x In(2 <sup>12+2</sup> )) - Radd)                                                                                | -   | 7.5 Note4    | -               | KΩ                 |
| Sampling switch resistance                   | RADC            |                                                                                                                                        | -                                                                                                                     | -   | -            | 1.5             | KΩ                 |
| Sample-and-hold capacitor                    | CADC            |                                                                                                                                        | -                                                                                                                     | -   | 2            | -               | pF                 |
|                                              |                 | ANIC                                                                                                                                   | )~ ANI7                                                                                                               | 0   | -            | V <sub>DD</sub> | V                  |
|                                              |                 | ANI8                                                                                                                                   | ~ ANI15                                                                                                               | 0   | -            | EVDD            | V                  |
| Analog input voltage                         | VAIN            | Internal refe<br>(2 0V≤)                                                                                                               | erence voltage<br>/vp≤5.5\/)                                                                                          |     | VBGR Note2   |                 | V                  |
|                                              |                 | $(2.0V \leqslant V_{DD} \leqslant 5.5V).$<br>The output voltage of the temperature sensor<br>$(2.0V \leqslant V_{DD} \leqslant 5.5V).$ |                                                                                                                       | ١   | /TMPS25 Note | 92              | V                  |

Reference voltage (-) = V<sub>SS)</sub>.

Note 1: Quantization error is not included (± 1/2 LSB).

- Note 2: Please refer to "6.8.2 Characteristics of Temperature Sensors/Internal Reference Voltages".
- Note 3: The F<sub>ADC</sub> is the operating frequency of the AD, with a maximum operating frequency of 64MHz.
- Note 4: It is guaranteed by the design and not tested in mass production. The typical value is the default sampling period Ts=13.5, and the conversion speed is  $F_{ADC}=64MHz$ .



# 6.8.2 Characteristics of the Temperature Sensor/Internal

### **Reference Voltage**

|                                              | · · · /             |                           |      |      |      |       |
|----------------------------------------------|---------------------|---------------------------|------|------|------|-------|
| Item                                         | Symbol              | Condition                 | Min  | Тур  | Max  | Unit  |
| The output voltage of the temperature sensor | V <sub>TMPS25</sub> | T <sub>A</sub> =25°C      | -    | 1.09 | -    | V     |
|                                              |                     | T <sub>A</sub> = -40~10°C | 1.25 | 1.45 | 1.65 | V     |
| Internal reference voltage                   | $V_{BGR}$           | T <sub>A</sub> =10~70°C   | 1.38 | 1.45 | 1.52 | V     |
|                                              |                     | T <sub>A</sub> =70~125°C  | 1.35 | 1.45 | 1.55 | V     |
| Temperature coefficient                      | <b>F</b> VTMPS      | -                         | -    | -3.5 | -    | mV/°C |
| Run stable wait time                         | TAMP                | -                         | 5    | -    | -    | us    |

#### (T<sub>A</sub> = -40~125°C, 2.0V≤V<sub>DD</sub>≤5.5V, V<sub>SS</sub> =EV<sub>SS</sub> =0V)

Remark: Low temperature specification value is guaranteed by the design, and low temperature conditions are not measured in mass production.

### 6.8.3 D/A Converter

| $(T_A = -40 \sim 125^{\circ}C, 2.0V \leq EV_{DD} = V_{DD} \leq 5.5V$ | $V_{SS} = EV_{SS} = 0V$ |
|----------------------------------------------------------------------|-------------------------|
|----------------------------------------------------------------------|-------------------------|

| Item               | Symbol |            | Condition                  | Min  | Тур | Max | Unit |
|--------------------|--------|------------|----------------------------|------|-----|-----|------|
| resolution         | RES    | -          | -                          | -    | -   | 8   | bit  |
| Combined error     | ET     | Rload=4MΩ  | 2.0V≤V <sub>DD</sub> ≤5.5V | -2.5 | -   | 2.5 | LSB  |
| Stabilization time | Ŧ      | Cload-20pE | 2.7V≤V <sub>DD</sub> ≤5.5V | -    | -   | 3   | us   |
| Stabilization time | I SET  | Cload=20pr | 2.0V≤V <sub>DD</sub> <2.7V | -    | -   | 6   | us   |
| Output impedance   | RO     | Rload=4MΩ  | 2.0V≤V <sub>DD</sub> ≤5.5V | 4.7  | -   | 8   | KΩ   |

Remark: Low temperature specification value is guaranteed by the design, and low temperature conditions are not measured in mass production.



## 6.8.4 Comparator

| Item                       | Symbol                            |                                        | Condition                   | Min           | Тур | Max             | Unit |
|----------------------------|-----------------------------------|----------------------------------------|-----------------------------|---------------|-----|-----------------|------|
| Input offset voltage       | Voffset                           |                                        | -                           | -             | ±10 | ±40             | mV   |
| Input voltage range        | VIN                               |                                        | -                           | 0             | -   | V <sub>DD</sub> | V    |
| Internal reference         | $\Delta V_{IREF}$                 | CmRVM register: 7FH to 80H (m = 0, 1). |                             | -             | -   | ±2              | LSB  |
| voltage deviation          |                                   | other                                  |                             | -             | -   | ±1              | LSB  |
| Response time              | T <sub>CR</sub> , T <sub>CF</sub> | The inpu                               | t amplitude ± 100mV         | -             | 70  | 125             | ns   |
| Run settling time          | T                                 | CMPn                                   | V <sub>DD</sub> = 3.3 ~5.5V | -             | -   | 1               |      |
| Note1                      | I STB                             | =0->1                                  | $V_{DD}$ = 2.0 ~ 3.3V       | -             | -   | 3               | us   |
| Reference settling<br>time | T <sub>VR</sub>                   | CVRE=0->1 Note2                        |                             | -             | -   | 20              | us   |
| Operating current          | ICMPDD                            | Refer to                               | 6.5.2 Supply current cha    | aracteristics | 3   |                 |      |

| $(T_A = -40 \sim 12)$ | 25°C, 2.0V≤EV <sub>DC</sub> | =V <sub>DD</sub> ≤5.5V, V | ss =EVss =0V) |
|-----------------------|-----------------------------|---------------------------|---------------|
|-----------------------|-----------------------------|---------------------------|---------------|

Note1: The time required from comparator action enable (CMPnEN=0 ->1) to meeting the various DC/AC style requirements of CMP.

Note2: By setting the CVREm bit to 1; m = 0 to 1), the reference settling time is passed before the comparator output can be enabled (CnOE bit = 1; n = 0 to 1)

Remark: Low temperature specification value is guaranteed by the design, and low temperature conditions are not measured in mass production.

# 6.8.5 Programmable Gain Amplifier PGA

| Parameter               | Symbol               |                                           | Condition                                    | Min | Тур | Max                       | Unit |
|-------------------------|----------------------|-------------------------------------------|----------------------------------------------|-----|-----|---------------------------|------|
| Input deviation voltage | Viopga               |                                           | -                                            | -   | -   | ±10                       | mV   |
| Input voltage<br>range  | VIPGA                |                                           | -                                            |     | -   | 0.9xV <sub>DD</sub> /Gain | V    |
| Output voltage          | VIOHPGA              |                                           | -                                            |     | -   | -                         | V    |
| range                   | VIOLPGA              |                                           | -                                            |     | -   | $0.07 x V_{DD}$           | V    |
|                         |                      | x4                                        | -                                            | -   | -   | ±1                        | %    |
|                         |                      | x8                                        | -                                            | -   | -   | ±1                        | %    |
|                         |                      | x10                                       | -                                            | -   | -   | ±1                        | %    |
| Gain deviation          | -                    | x12                                       | -                                            | -   | -   | ±2                        | %    |
|                         |                      | x14                                       | -                                            | -   | -   | ±2                        | %    |
|                         |                      | x16                                       | -                                            | -   | -   | ±2                        | %    |
|                         |                      | x32                                       | -                                            | -   | -   | ±3                        | %    |
|                         | SRrpga               | Rise Vin= 0.1<br>V <sub>DD</sub> /gain to | 4.0V ≤V <sub>DD</sub> ≤5.5 V<br>(except x32) | 3.5 | -   | -                         |      |
|                         |                      | 0.9V <sub>DD</sub> /gain.                 | 4.0 V ≤V <sub>DD</sub> ≤5.5 V (x32)          | 3.0 | -   | -                         |      |
| Conversion rate         |                      | 10 to 90%<br>output voltage<br>amplitude  | $2.0 V \leq V_{DD} \leq 4.0 V$               | 0.5 | -   | -                         |      |
| Note2                   |                      | Drop Vin= 0.1<br>V <sub>DD</sub> /gain to | 4.0V ≤V <sub>DD</sub> ≤5.5 V<br>(except x32) | 3.5 | -   | -                         | v/us |
|                         | SREPGA               | 0.9V <sub>DD</sub> /gain.                 | 4.0 V ≤V <sub>DD</sub> ≤5.5V (x32)           | 3.0 | -   | -                         |      |
|                         | 90 to<br>outp<br>amp | 90 to 10%<br>output voltage<br>amplitude  | $2.0 V \leq V_{DD} \leq 4.0 V$               | 0.5 | -   | -                         |      |
|                         |                      | x4                                        | -                                            | -   | -   | 5                         | us   |
|                         |                      | x8                                        | -                                            | -   | -   | 5                         | us   |
| Stable                  |                      | x10                                       | -                                            | -   | -   | 5                         | us   |
| operation               | $T_{PGA}$            | x12                                       | -                                            | -   | -   | 10                        | us   |
| to the time Note1       |                      | x14                                       | -                                            | -   | -   | 10                        | us   |
|                         |                      | x16                                       | -                                            | -   | -   | 10                        | us   |
|                         |                      | x32                                       | -                                            | -   | -   | 10                        | us   |
| Operating<br>current    | Ipgadd               | Refer to 6.5.2                            | Supply current characteristics               | 6   |     |                           |      |

 $<sup>(</sup>T_A = -40 \sim 125^{\circ}C, 2.0V \leq EV_{DD} = V_{DD} \leq 5.5V, V_{SS} = EV_{SS} = 0V)$ 

Note 1: The time required from PGA action enable (PGAEN=1) to meeting the various DC and AC style requirements of the PGA.



### 6.8.6 POR Circuit Characteristics

| Item                      | Symbol          | Condition                     | Min  | Тур  | Max | Unit |
|---------------------------|-----------------|-------------------------------|------|------|-----|------|
| Detection voltage         | V <sub>BY</sub> | When the supply voltage rises | -    | 1.50 | 2.0 | V    |
|                           | Vpdr            | When the supply voltage drops | 1.37 | 1.45 | -   | V    |
| Minimum pulse width Note1 | T <sub>PW</sub> | -                             | 300  | -    | -   | us   |

Note 1: This is the time required for the POR to reset when V<sub>DD</sub> is lower than V<sub>PDR</sub>. In addition, bit0 (HIOSTOP) and bit7() of the clock operating state control register (CSC) are set in deep sleep mode MSTOP) stops the oscillation of the main system clock (F<sub>MAIN</sub>) from V<sub>DD</sub> below 0.7V to a rebound above V The time required for POR reset up to POL.





## 6.8.7 LVD Circuit Characteristics

1. Reset mode, interrupt mode

#### (T<sub>A</sub>= -40~125°C, V<sub>PDR</sub>≪V<sub>DD</sub>≪5.5V, V<sub>SS</sub>=0V)

| Item                | Symbol            | Condition                     | Min  | Тур  | Max  | Unit |
|---------------------|-------------------|-------------------------------|------|------|------|------|
| Detection voltage   | Maria             | When the supply voltage rises | -    | 4.06 | 4.26 | V    |
|                     | V LVD0            | When the supply voltage drops | 3.78 | 3.98 | -    | V    |
|                     |                   | When the supply voltage rises | -    | 3.75 | -    | V    |
|                     | V LVD1            | When the supply voltage drops | -    | 3.67 | -    | V    |
|                     | V <sub>LVD2</sub> | When the supply voltage rises | -    | 3.02 | -    | V    |
|                     |                   | When the supply voltage drops | -    | 2.96 | -    | V    |
|                     | V <sub>LVD3</sub> | When the supply voltage rises | -    | 2.71 | -    | V    |
|                     |                   | When the supply voltage drops | -    | 2.65 | -    | V    |
|                     | VLVD4             | When the supply voltage rises | -    | 2.09 | 2.16 | V    |
|                     |                   | When the supply voltage drops | 1.97 | 2.04 | -    | V    |
| Minimum pulse width | T <sub>LW</sub>   | -                             | 300  | -    | -    | us   |
| Detection delay     | -                 | -                             | -    | -    | 300  | us   |

Remark: It is guaranteed by the design and not tested in mass production.

#### 2. Interrupt mode & reset mode

#### (T<sub>A</sub>= -40~125°C, V<sub>PDR</sub>≤V<sub>DD</sub>≤5.5V, V<sub>SS</sub>=0V)

| Item                 | Symbol                                  | Condition            |                            |                            | Min  | Тур  | Max  | Unit |
|----------------------|-----------------------------------------|----------------------|----------------------------|----------------------------|------|------|------|------|
|                      | VLVDB0                                  | V <sub>POC2</sub> =0 | Drop the reset vo          | oltage                     | 1.78 | 1.84 |      | V    |
| Interrupt &<br>Reset | N/                                      | V <sub>POC1</sub> =0 | LVIS1=0                    | Rise reset release voltage | -    | 2.09 | 2.16 | V    |
|                      | V LVDB2                                 | V <sub>POC0</sub> =1 | LVIS0=1                    | Drop the interrupt voltage | 1.97 | 2.04 | -    | V    |
|                      | VLVDC0                                  |                      | Drop the reset vo          | oltage                     | -    | 2.45 | -    | V    |
|                      | VLVDC2 VPOC2=0<br>VPOC1=1               | V <sub>POC2</sub> =0 | LVIS1=0                    | Rise reset release voltage | -    | 2.71 | -    | V    |
|                      |                                         | V <sub>POC1</sub> =1 | LVIS0=1                    | Drop the interrupt voltage | -    | 2.65 | -    | V    |
|                      | V <sub>LVDC3</sub> V <sub>POC0</sub> =0 | LVIS1=0              | Rise reset release voltage | -                          | 3.75 | -    | V    |      |
| mode                 |                                         | LVIS0=0              | Drop the interrupt voltage | -                          | 3.67 | -    | V    |      |
|                      | VLVDD0                                  |                      | Drop the reset vo          | oltage                     | -    | 2.75 | -    | V    |
|                      | VLVDD2 VPOC2=0<br>VPOC1=1               | V <sub>POC2</sub> =0 | LVIS1=0                    | Rise reset release voltage | -    | 3.02 | -    | V    |
|                      |                                         | LVIS0=1              | Drop the interrupt voltage | -                          | 2.96 | -    | V    |      |
|                      | VPOC0=1                                 | V <sub>POC0</sub> =1 | LVIS1=0                    | Rise reset release voltage | -    | 4.06 | 4.26 | V    |
|                      |                                         | LVIS0=0              | Drop the interrupt voltage | 3.78                       | 3.98 | -    | V    |      |



# 6.8.8 Reset Time Versus Rising Slope Characteristics of The

# **Supply Voltage**

(TA= -40~125°C, Vss=0V)

| Item                                   | Symbol             | Condition | Min | Тур | Max | Unit |
|----------------------------------------|--------------------|-----------|-----|-----|-----|------|
| Reset time                             | T <sub>RESET</sub> | -         | -   | 2   | -   | ms   |
| The rising slope of the supply voltage | SVDD               | -         | -   | -   | 54  | V/ms |



# 6.9 Memory Characteristics

### 6.9.1 Flash Memory

| Symbol            | Parameter                            | Test the conditions                        | Min | Max | Unit    |
|-------------------|--------------------------------------|--------------------------------------------|-----|-----|---------|
| T <sub>PROG</sub> | Word Write Time (32bit)              | T <sub>A</sub> = -40~125°C                 | 24  | 30  | us      |
| Terase            | Sector erase time                    | T <sub>A</sub> = -40~125°C                 | 4   | 5   | ms      |
|                   | Slice erase time                     | T <sub>A</sub> = -40~125°C                 | 20  | 40  | ms      |
| Nend              | The number of times it can be erased | T <sub>A</sub> = -40~125°C                 | 20  | -   | Kcycles |
| T <sub>RET</sub>  | Data retention period                | 20 kcycles Note1 at T <sub>A</sub> = 125°C | 20  | -   | years   |

Note 1: Cycle testing is performed over the entire temperature range.

Remark: It is guaranteed by the design and not tested in mass production.

### 6.9.2 RAM Storage

 $(T_{A}=-40\sim125^{\circ}C, 2.0V \le EV_{DD}=V_{DD} \le 5.5V, V_{SS}=EV_{SS}=0V)$ 

| Symbol   | Parameter        | Test the conditions        | Min | Max | Unit |
|----------|------------------|----------------------------|-----|-----|------|
| VRAMHOLD | RAM hold voltage | T <sub>A</sub> = -40~125°C | 0.8 | -   | V    |



### 6.10 EMS Features

### 6.10.1 ESD Electrical Characteristics

| Symbol                | Parameter                  | Test the conditions    | Class |
|-----------------------|----------------------------|------------------------|-------|
| V <sub>ESD(HBM)</sub> | Electrostatic discharge    | T <sub>A</sub> =25°C   | TBD   |
|                       | (Human Discharge Mode HBM) | JEDEC EIA/JESD22- A114 |       |

Remark: It is guaranteed by the design and not tested in mass production.

### 6.10.2 Latch-up Electrical Characteristics

| Symbol | Parameter             | Test the conditions                 | Class |
|--------|-----------------------|-------------------------------------|-------|
| LU     | Static latch-up class | JEDEC STANDARD NO.78E NOVEMBER 2016 | TBD   |



# **7** Package Information

# 7.1 LQFP64(7x7mm,0.4mm pitch)



| Symbol | Millimetre |      |      |
|--------|------------|------|------|
|        | Min        | Name | Max  |
| А      | -          | -    | 1.60 |
| A1     | 0.05       | -    | 0.15 |
| A2     | 1.35       | 1.40 | 1.45 |
| A3     | 0.59       | 0.64 | 0.69 |
| b      | 0.16       | -    | 0.24 |
| b1     | 0.15       | 0.18 | 0.21 |
| С      | 0.13       | -    | 0.17 |
| c1     | 0.12       | 0.13 | 0.14 |
| D      | 8.80       | 9.00 | 9.20 |
| D1     | 6.90       | 7.00 | 7.10 |
| E      | 8.80       | 9.00 | 9.20 |
| E1     | 6.90       | 7.00 | 7.10 |
| eB     | 8.10       | -    | 8.25 |
| е      | 0.40BSC    |      |      |
| L      | 0.45       | -    | 0.75 |
| L1     | 1.00REF    |      |      |
| θ      | 0°         | -    | 7°   |



# 7.2 LQFP80(12x12mm,0.5mm pitch)



| Symbol | Millimeter |       |       |
|--------|------------|-------|-------|
|        | Min        | Nom   | Max   |
| A      | -          | -     | 1.60  |
| A1     | 0.05       | -     | 0.15  |
| A2     | 1.35       | 1.40  | 1.45  |
| A3     | 0.59       | 0.64  | 0.69  |
| b      | 0.18       | -     | 0.26  |
| b1     | 0.17       | 0.20  | 0.23  |
| С      | 0.13       | -     | 0.17  |
| c1     | 0.12       | 0.13  | 0.14  |
| D      | 13.80      | 14.00 | 14.20 |
| D1     | 11.90      | 12.00 | 12.10 |
| E      | 13.80      | 14.00 | 14.20 |
| E1     | 11.90      | 12.00 | 12.10 |
| eB     | 13.05      | -     | 13.25 |
| е      | 0.50BSC    |       |       |
| L      | 0.45       | 0.60  | 0.75  |
| L1     | 1.00REF    |       |       |
| θ      | 0°         | -     | 7°    |



# 7.3 LQFP100(14x14mm,0.5mm pitch)



| Symbol | Millimetre |       |        |
|--------|------------|-------|--------|
|        | Min        | Name  | Max    |
| A      | -          | -     | 1.60   |
| A1     | 0.05       | -     | 0.15   |
| A2     | 1.35       | 1.40  | 1.45   |
| A3     | 0.59       | 0.64  | 0.69   |
| b      | 0.18       | -     | 0.26   |
| b1     | 0.17       | 0.20  | 0.23   |
| с      | 0.13       | -     | 0.17   |
| c1     | 0.12       | 0.13  | 0.14   |
| D      | 15.80      | 16.00 | 16.20  |
| D1     | 13.90      | 14.00 | 14.10  |
| Е      | 15.80      | 16.00 | 16.20  |
| E1     | 13.90      | 14.00 | 14.10  |
| eB     | 15.05      | -     | 15. 35 |
| е      | 0. 50BSC   |       |        |
| L      | 0.45       | -     | 0.75   |
| L1     | 1.00REF    |       |        |
| θ      | 0          | -     | 7°     |



# 8 Revision History

| Version | Date        | Modify content                                                                                                                                                                                                                                                                                                                                |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V1.00   | August 2022 | Initial version                                                                                                                                                                                                                                                                                                                               |
| V1.01   | Nov 2022    | Modified the parameters in 6.5.1                                                                                                                                                                                                                                                                                                              |
| V1.0.2  | Feb 2023    | <ol> <li>Correct parameter e in Section 7.2;</li> <li>Correct the product pin function description in section 4.1;</li> <li>Optimize the format;</li> <li>Remarks of supplementary parameters at low temperature;</li> <li>Supplement the standard grade of automobile products in chapter 1.1.</li> </ol>                                    |
| V1.0.3  | Mar 2023    | 1.3.2, 1.3.3, 4.1.2, 4.1.3 P137 Pin function SI00 corrected to SDI00                                                                                                                                                                                                                                                                          |
| V1.0.4  | Sep 2023    | Update P150~P156 pin characteristics in 6.2,6.3,6.5.1                                                                                                                                                                                                                                                                                         |
| V1.0.5  | Nov 2023    | Updated Flash erase times in 6.9.1                                                                                                                                                                                                                                                                                                            |
| V1.0.6  | Jan 2024    | <ol> <li>Modified section 6.1 Typical Application of Peripheral Circuits</li> <li>Add input current parameters in section 6.3</li> <li>Corrected the cover page</li> <li>Added P64~P67 support for internal pull-up function in section 4.1.2,<br/>4.1.3</li> <li>Modified to the number of multiple PWM signals in section 5.13.2</li> </ol> |